Skip to main content
Log in

Sol–gel synthesis of strontium ferrate (SrFeO3) nanoparticles and evaluation of anti-leukemic effects against leukemic cell lines

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Several studies have shown that metallic nanoparticles have a therapeutic impact on leukemia cells. On the other hand, the majority of these particles are hazardous to healthy and malignant cells. SrFeO3 nanoparticles were synthesized in the current study using sol–gel procedures. Several analytical methods, including scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and dynamic light scattering (DLS), were used to characterize the resulting nanoparticles. The considered particle size utilizing XRD was discovered to be in the range of 50 ± 2 nm, which was further confirmed by DLS analysis. The Nalm-6 (ALL) and the K562 (CML) cell lines and PBMCs (Normal cells) were treated with 25, 50, 100, 150, and 200 µg/ml of strontium nanoparticles for 24 and 48 h. Afterward, the cell viability and cell death were evaluated via MTT assays and flow cytometry analysis. The strontium nanoparticles with concentrations above 150 μg/mL could cause a cytotoxic effect on the Nalm-6 and K562 leukemic cells. Strontium nanoparticles exhibited no harmful impact on healthy PBMCs, even though the flow cytometry examination revealed that apoptosis is the primary process of leukemic cell death. Thus, SrFeO3 nanoparticles show potential for application in future anti-leukemic therapies and pave the way to a new study setting.

Graphical Abstract

Highlights

  • Strontium ferrate nanoparticles suppressed the growth of leukemia cell lines.

  • Strontium ferrate nanoparticles were nontoxic to normal PBMC cells.

  • Strontium ferrate nanoparticles increased apoptosis in leukemia cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data would be available from the corresponding author upon reasonable request.

References

  1. Inaba H, Pui C-H (2021) Advances in the diagnosis and treatment of pediatric acute lymphoblastic leukemia. J Clin Med 10(9):1926.

    Article  CAS  Google Scholar 

  2. Malczewska M et al. (2022) Recent advances in treatment options for childhood acute lymphoblastic leukemia. Cancers 14(8):2021.

    Article  CAS  Google Scholar 

  3. Minciacchi VR, Kumar R, Krause DS (2021) Chronic myeloid leukemia: a model disease of the past, present and future. Cells 10(1):117.

    Article  CAS  Google Scholar 

  4. García-Gutiérrez V et al. (2022) A clinician perspective on the treatment of chronic myeloid leukemia in the chronic phase. J Hematol Oncol 15(1):90.

    Article  Google Scholar 

  5. Du M et al. (2022) The Global Burden of Leukemia and Its Attributable Factors in 204 Countries and Territories: Findings from the Global Burden of Disease 2019 Study and Projections to 2030. J Oncol 2022:1612702.

    Article  Google Scholar 

  6. Schirrmacher V (2019) From chemotherapy to biological therapy: a review of novel concepts to reduce the side effects of systemic cancer treatment. Int J Oncol 54(2):407–419.

    Article  CAS  Google Scholar 

  7. Śliwa-Tytko P et al. (2022) Neurotoxicity associated with treatment of acute lymphoblastic leukemia chemotherapy and immunotherapy. Int J Mol Sci 23(10):5515.

    Article  Google Scholar 

  8. Ashoub MH et al. (2023) Extracellular microvesicles: biologic properties, biogenesis, and applications in leukemia. Mol Cell Biochem 1(1):1–12.

    Google Scholar 

  9. Cario G et al. (2020) BCR-ABL1-like acute lymphoblastic leukemia in childhood and targeted therapy. Haematologica 105(9):2200.

    Article  CAS  Google Scholar 

  10. Khademi R et al. (2023) Nanotechnology-based diagnostics and therapeutics in acute lymphoblastic leukemia: a systematic review of preclinical studies. Nanoscale Adv 5(3):571.

    Article  Google Scholar 

  11. Wang J et al. (2022) An overview on therapeutic efficacy and challenges of nanoparticles in blood cancer therapy. J King Saud Univ Sci 6(1):102182.

    Article  Google Scholar 

  12. Ashoub MH et al. (2023) Induction of ferroptosis cell death in acute promyelocytic leukemia cell lines (NB4 and HL-60) using hydrothermally synthesized ZnO NPs in the presence of black cardamom extract. Results Eng 20(1):101479.

    Article  Google Scholar 

  13. Wan Z et al. (2021) Research advances in nanomedicine, immunotherapy, and combination therapy for leukemia. J Leucoc Biol 109(2):425–436.

    Article  CAS  Google Scholar 

  14. Yadav P, Ambudkar SV, Rajendra Prasad N (2022) Emerging nanotechnology-based therapeutics to combat multidrug-resistant cancer. J Nanobiotechnol 20(1):1–35.

    Article  Google Scholar 

  15. Abaszadeh F, Ashoub MH, Amiri M (2023) Nanoemulsions challenges and future prospects as a drug delivery system. In Current trends in green nano-emulsions: food, agriculture and biomedical sectors, Springer Nature Singapore p. 217–243.

  16. Desai N et al. (2021) Metallic nanoparticles as drug delivery system for the treatment of cancer. Expert Opin drug Deliv 18(9):1261–1290.

    Article  Google Scholar 

  17. Shariatzadeh S et al. (2022) Metallic nanoparticles for the modulation of tumor microenvironment; a new horizon. Front Bioeng Biotechnol 10:847433.

    Article  Google Scholar 

  18. Tuli HS et al. (2023) Metal nanoparticles in cancer: from synthesis and metabolism to cellular interactions. J Nanostructure Chem 13(3):321–348.

    Article  CAS  Google Scholar 

  19. Andleeb A et al. (2021) A systematic review of biosynthesized metallic nanoparticles as a promising anti-cancer-strategy. Cancers 13(11):2818.

    Article  CAS  Google Scholar 

  20. Salem SS, Fouda A (2021) Green synthesis of metallic nanoparticles and their prospective biotechnological applications: an overview. Biol trace Elem Res 199:344–370.

    Article  CAS  Google Scholar 

  21. Zhao R et al. (2022) Recent advances in the development of noble metal NPs for cancer therapy. Bioinorganic Chem Appl, 2022:2444516.

  22. El-Seedi HR et al. (2019) Metal nanoparticles fabricated by green chemistry using natural extracts: biosynthesis, mechanisms, and applications. RSC Adv 9(42):24539–24559.

    Article  CAS  Google Scholar 

  23. Xu J-J et al. (2022) Metal nanoparticles as a promising technology in targeted cancer treatment. Drug Deliv 29(1):664–678.

    Article  CAS  Google Scholar 

  24. Wang Y et al. (2021) Non‐noble metal‐based catalysts applied to hydrogen evolution from hydrolysis of boron hydrides. Small Struct 2(7):2000135.

    Article  CAS  Google Scholar 

  25. Wu ZP et al. (2020) Non‐noble‐metal‐based electrocatalysts toward the oxygen evolution reaction. Adv Funct Mater 30(15):1910274.

    Article  CAS  Google Scholar 

  26. Song T et al. (2021) Recent advance in selective hydrogenation reaction catalyzed by biomass-derived non-noble metal nanocomposites. Tetrahedron Lett 83:153331.

    Article  CAS  Google Scholar 

  27. Villalobos Gutiérrez PT et al. (2023) Functionalized metal nanoparticles in cancer therapy. Pharmaceutics 15(7):1932.

    Article  Google Scholar 

  28. Baranwal J et al. (2023) Nanoparticles in cancer diagnosis and treatment. Materials 16(15):5354.

    Article  CAS  Google Scholar 

  29. Medici S et al. (2021) An updated overview on metal nanoparticles toxicity. Semin Cancer Biol 76(1):17.

    Article  Google Scholar 

  30. Gavas S, Quazi S, Karpiński TM (2021) Nanoparticles for cancer therapy: current progress and challenges. Nanoscale Res Lett 16(1):173.

    Article  CAS  Google Scholar 

  31. Sargazi S et al. (2022) Application of green gold nanoparticles in cancer therapy and diagnosis. Nanomaterials 12(7):1102.

    Article  CAS  Google Scholar 

  32. Laha SS et al. (2022) Rare‐earth doped iron oxide nanostructures for cancer theranostics: magnetic hyperthermia and magnetic resonance imaging. Small 18(11):2104855.

    Article  CAS  Google Scholar 

  33. Wu L, Wang C, Li Y (2022) Iron oxide nanoparticle targeting mechanism and its application in tumor magnetic resonance imaging and therapy. Nanomedicine 17(21):1567–1583.

    Article  CAS  Google Scholar 

  34. Idrees H et al. (2020) A review of biodegradable natural polymer-based nanoparticles for drug delivery applications. Nanomaterials 10(10):1970.

    Article  CAS  Google Scholar 

  35. Mainini F, Eccles MR (2020) Lipid and polymer-based nanoparticle siRNA delivery systems for cancer therapy. Molecules 25(11):2692.

    Article  CAS  Google Scholar 

  36. Hosseini SM et al. (2023) Multifunctional carbon-based nanoparticles: theranostic applications in cancer therapy and diagnosis. ACS Appl Bio Mater 6(4):1323–1338.

    Article  CAS  Google Scholar 

  37. Thomas DT et al. (2022) Carbon‐based nanomaterials for cancer treatment and diagnosis: a review. ChemistrySelect 7(36):e202202455.

    Article  CAS  Google Scholar 

  38. Sargazi S et al. (2022) Recent trends in mesoporous silica nanoparticles of rode-like morphology for cancer theranostics: a review. J Mol Struct 1261:132922.

    Article  CAS  Google Scholar 

  39. Dey AD et al. (2022) Dendrimers as nanoscale vectors: unlocking the bars of cancer therapy. Semin Cancer Biol 6(2):396.

    Article  Google Scholar 

  40. Zhang Z et al. (2022) Application of lipid-based nanoparticles in cancer immunotherapy. Front Immunol 13:967505.

    Article  CAS  Google Scholar 

  41. Østergaard MB et al. (2022) Kinetics of strontium carbonate formation on a Ce-doped SrFeO3 perovskite. Catalysts 12(3):265.

    Article  Google Scholar 

  42. Tummino ML (2022) SrFeO3 peculiarities and exploitation in decontamination processes and environmentally-friendly energy applications. Current Research in Green and Sustainable. Chemistry 5:100339.

    CAS  Google Scholar 

  43. Manimuthu P, Venkateswaran C (2011) Evidence of ferroelectricity in SrFeO3− δ. J Phys D Appl Phys 45(1):015303.

    Article  Google Scholar 

  44. Li X et al. (2021) A-site perovskite oxides: an emerging functional material for electrocatalysis and photocatalysis. J Mater Chem A 9(11):6650–6670.

    Article  CAS  Google Scholar 

  45. Hashimoto K, Otomo R, Kamiya Y (2020) SrFe 1− x Sn x O 3− δ nanoparticles with enhanced redox properties for catalytic combustion of benzene. Catal Sci Technol 10(18):6342–6349.

    Article  CAS  Google Scholar 

  46. Marek E et al. (2018) The use of strontium ferrite in chemical looping systems. Appl Energy 223:369–382.

    Article  CAS  Google Scholar 

  47. Mundekkad D, Cho WC (2022) Nanoparticles in clinical translation for cancer therapy. Int J Mol Sci 23(3):1685.

    Article  CAS  Google Scholar 

  48. Aghebati‐Maleki A et al. (2020) Nanoparticles and cancer therapy: perspectives for application of nanoparticles in the treatment of cancers. J Cell Physiol 235(3):1962–1972.

    Article  Google Scholar 

  49. Singh C, Wagle A, Rakesh M (2017) Doped LaCoO3 perovskite with Fe: a catalyst with potential antibacterial activity. Vacuum 146:468–473.

    Article  CAS  Google Scholar 

  50. Zhang L et al. (2014) Antibacterial activities of mechanochemically synthesized perovskite strontium titanate ferrite metal oxide. Colloids Surf A Physicochemical Eng Asp 456:169–175.

    Article  CAS  Google Scholar 

  51. Jaiswal SK, Kashyap VK, Kumar J (2012) On the sol–gel synthesis and characterization of strontium ferrite ceramic material. Mater Res Bull 47(3):692–699.

    Article  CAS  Google Scholar 

  52. Liang C et al. (2004) Oxygen sensitivity of SrFeO3-δ thin films prepared by sol-gel method. Key Eng Mater 280:315–318.

    Google Scholar 

  53. Srilakshmi C, Saraf R, Shivakumara C (2015) Effective degradation of aqueous nitrobenzene using the SrFeO3−δ photocatalyst under UV Illumination and Its Kinetics and Mechanistic Studies. Ind Eng Chem Res 54(32):7800–7810.

    Article  CAS  Google Scholar 

  54. Abdel-Khalek E et al. (2021) Synthesis and characterization of SrFeO 3-δ nanoparticles as antimicrobial agent. J Sol Gel Sci Technol 97:27–38.

    Article  CAS  Google Scholar 

  55. Augustin C, Berchmans LJ, Selvan RK (2004) Structural, electrical and electrochemical properties of co-precipitated SrFeO3− δ. Mater Lett 58(7-8):1260–1266.

    Article  CAS  Google Scholar 

  56. Maksoud MA et al. (2019) Antibacterial, antibiofilm, and photocatalytic activities of metals-substituted spinel cobalt ferrite nanoparticles. Microb Pathogenesis 127:144–158.

    Article  CAS  Google Scholar 

  57. Liu L et al. (2016) Effects of (La, Sr) co-doping on electrical conduction and magnetic properties of BiFeO3 nanoparticles. Chin Phys B 25(9):097801.

    Article  Google Scholar 

  58. Zeljković S et al. (2018) Solvent-deficient synthesis of nanocrystalline Ba0. 5Sr0. 5Co0. 8Fe0. 2O3-δ powder. Process Appl Ceram 12(4):342–349.

    Article  Google Scholar 

  59. Shen J et al. (2020) Advances of nanoparticles for leukemia treatment. ACS Biomater Sci Eng 6(12):6478–6489.

    Article  CAS  Google Scholar 

  60. Kancharla UM et al. (2023) Biosynthesis of Strontium nanoparticles using Acacia Nilotica and its anti-cancer activity against lung cancer cell line. J Surv Fish Sci 10(1S):150–161.

    Google Scholar 

  61. Akçan R et al. (2020) Nanotoxicity: a challenge for future medicine. Turkish J Med Sci 50(4):1180–1196.

    Article  Google Scholar 

  62. Demir E (2021) A review on nanotoxicity and nanogenotoxicity of different shapes of nanomaterials. J Appl Toxicol 41(1):118–147.

    Article  CAS  Google Scholar 

  63. Kumar V et al. (2019) Nanotechnology: nanomedicine, nanotoxicity and future challenges. Nanosci Nanotechnol Asia 9(1):64–78.

    Article  CAS  Google Scholar 

  64. Sheng X et al. (2023) Advanced applications of strontium-containing biomaterials in bone tissue engineering. Mater Today Bio 20:100636.

  65. Alshammari H et al. (2021) Antimicrobial properties of strontium functionalized titanium surfaces for oral applications, a systematic review. Coatings 11(7):810.

    Article  CAS  Google Scholar 

  66. Mukherjee S, Mishra M (2021) Application of strontium-based nanoparticles in medicine and environmental sciences. Nanotechnol Environ Eng 6(2):25.

    Article  CAS  Google Scholar 

  67. Fekri HS et al. (2019) Green synthesis of strontium nanoparticles self‐assembled in the presence of carboxymethyl cellulose: an in vivo imaging study. Luminescence 34(8):870–876.

    Article  CAS  Google Scholar 

  68. Turky AO et al. (2021) A robust and highly precise alternative against the proliferation of intestinal carcinoma and human hepatocellular carcinoma cells based on lanthanum strontium manganite nanoparticles. Materials 14(17):4979.

    Article  CAS  Google Scholar 

  69. Khamsehashari N, Hassanzadeh-Tabrizi S, Bigham A (2018) Effects of strontium adding on the drug delivery behavior of silica nanoparticles synthesized by P123-assisted sol-gel method. Mater Chem Phys 205:283–291.

    Article  CAS  Google Scholar 

  70. Kiani FA et al. (2018) Optimization of Ag2O nanostructures with strontium for biological and therapeutic potential. Artif Cells Nanomed Biotechnol 46(sup3):1083–1091.

    Article  Google Scholar 

  71. Qian W-Y et al. (2012) pH-sensitive strontium carbonate nanoparticles as new anticancer vehicles for controlled etoposide release. Int J Nanomed. 7:5781–5792.

  72. Bakhtiar A et al. (2022) Active targeting via ligand-anchored pH-responsive strontium nanoparticles for efficient nucleic acid delivery into breast cancer cells. J Pharm Investig 52(2):243–257.

    Article  CAS  Google Scholar 

  73. Aloufi AS (2023) Green synthesis of strontium-doped tin dioxide (SrSnO2) nanoparticles using the Mahonia bealei leaf extract and evaluation of their anticancer and antimicrobial activities. Green Process Synth 12(1):20228116.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are willing to express their sincere thanks for the support provided by the Kerman University of Medical Sciences for this project.

Author contributions

MHA: Investigation, Writing- Original draft preparation, Visualization, Methodology. MT: Writing- Reviewing and Editing. MA: Writing- Reviewing and Editing. AF: Resources, Formal analysis, Writing- Reviewing and Editing. MA: Conceptualization, Supervision, Methodology, Formal analysis, Validation, Writing- Reviewing and Editing.

Funding

Kerman University of Medical Sciences with grant number (400001165).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahnaz Amiri.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval and consent to participate

The study gained the approval of the ethical committee of the Kerman University of Medical Sciences with the Ethical approval code: IR.KMU.REC.1401.320. All methods were performed following the relevant guidelines and regulations.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taeby, M., Ashoub, M.H., Asghari, M. et al. Sol–gel synthesis of strontium ferrate (SrFeO3) nanoparticles and evaluation of anti-leukemic effects against leukemic cell lines. J Sol-Gel Sci Technol 109, 56–65 (2024). https://doi.org/10.1007/s10971-023-06251-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-023-06251-2

Keywords

Navigation