Skip to main content
Log in

Structural, magnetic and magnetocaloric effect investigation of La0.8-xGdxSr0.2MnO3(x = 0.00, 0.05, 0.075, 0.10) manganites near room temperature

  • Original Paper: Sol-gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The La0.8-xGdxSr0.2MnO3 (x = 0.00,0.05,0.075,0.10) manganites were synthesized by the Pechini sol-gel method. The effects of doping Gd3+ on the structure, morphology and magnetic and magnetocaloric properties were investigated. The GSAS refinement showed that the Mn-O bond length and Mn-O-Mn bond angle changed, with the increase of Gd3+ replacement, shifting the TC near room temperature. The samples exhibited second-order phase transition near TC. The maximum magnetic entropy change ΔSM of the samples were 4.06 J kg−1K−1, 4.26 J kg−1K−1, 4.23 J kg−1K−1, and 3.59 J kg−1K−1 at an applied magnetic field of 5 T. The TC of the samples was 295 K at a doping level of 0.075, which was very close to room temperature. The relative cooling power RCP of La0.725Gd0.075Sr0.2MnO3 was 116.40 J kg−1 at an applied magnetic field of 2 T. All evidence indicated that La0.725Gd0.075Sr0.2MnO3 was potentially promising for magnetic applications.

Graphical Abstract

Highlights

  • The La0.8-xGdxSr0.2MnO3 manganites were synthesized by the Pechini sol–gel method.

  • As the TC close to room temperature, the ΔSM always remains at a stable value.

  • TC of La0.725Gd0.075Sr0.2MnO3 was 295 K and RCP is 116.40 J•kg−1 at an applied magnetic field of 2 T.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The datasets generated during and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Debye P (1926) Einige bemerkungen zur magnetisierung bei tiefer temperatur. Ann der Phys 386(25):1154–1160

    Article  Google Scholar 

  2. Giauque W (1927) A thermodynamic treatment of certain magnetic effects. A proposed method of producing temperatures considerably below 1° absolute. J Am Chem Soc 49(8):1864–1870

    Article  CAS  Google Scholar 

  3. Gutfleisch O, Willard MA, Bruck E, Chen CH, Sankar SG, Liu JP (2011) Magnetic Materials and Devices for the 21st Century: Stronger, Lighter, and More Energy Efficient. Adv Mater 23(7):821–842

    Article  CAS  Google Scholar 

  4. Law JY, Franco V, Keblinski P, Ramanujan RV (2013) Active transient cooling by magnetocaloric materials. Appl Therm Eng 52(1):17–23

    Article  CAS  Google Scholar 

  5. Phan MH, Yu SC (2007) Review of the magnetocaloric effect in manganite materials. J Magn Magn Mater 308(2):325–340

    Article  CAS  Google Scholar 

  6. Bruck E, Tegus O, Thanh DTC, Buschow KHJ (2007) Magnetocaloric refrigeration near room temperature (invited). J Magn Magn Mater 310(2):2793–2799

    Article  Google Scholar 

  7. Gschneidner KA, Pecharsky VK, Tsokol AO (2005) Recent developments in magnetocaloric materials. Rep. Prog Phys 68(6):1479–1539

    Article  CAS  Google Scholar 

  8. Guo ZB, Du YW, Zhu JS, Huang H, Ding WP, Feng D (1997) Large magnetic entropy change in perovskite-type manganese oxides. Phys Rev Lett 78(6):1142–1145

    Article  CAS  Google Scholar 

  9. Anderson PW, Hasegawa HJPR (1955) Considerations on double exchange. Phys Rev B 100(2):675

    Article  CAS  Google Scholar 

  10. Zener C (1951) Interaction between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure. Phys Rev 82(3):403

    Article  CAS  Google Scholar 

  11. Bally M, Islam M, Ahasan M, Khan FJJOM, Materials M (2022) Effect of calcium doping on structural, magnetic and magneto-caloric properties of La0.55CaxSr0.45-xMnO3 manganites. J Magn Magn Mater 557:169462

    Article  CAS  Google Scholar 

  12. Cherif K, Belkahla A, Dhahri J, Hlil EKJCI (2016) Indium doping effect on magnetocaloric, electro-transport and magnetoresistive properties of La0.6Gd0.1Sr0.3Mn1-xInxO3. Ceram Int 42(9):10537–10546

    Article  CAS  Google Scholar 

  13. Liu L, Zou Z, He B, Mao Z, Xie Z (2022) Effect of Bi doping on the crystal structure, magnetic and magnetocaloric properties of La0.7-xBixSr0.15Ca0.15MnO3 (x = 0, 0.05, 0.10, 0.15) manganites. J Magn Magn Mater 549:169006

    Article  CAS  Google Scholar 

  14. Sfifir I, Ezaami A, Cheikhrouhou-Koubaa W, Cheikhrouhou A (2017) Structural, magnetic and magnetocaloric properties in La0.7-xDyxSr0.3MnO3 manganites (x = 0.00, 0.01 and 0.03). J Alloy Compd 696:760–767

    Article  CAS  Google Scholar 

  15. Ehsani M, Azizi SJCI (2021) Magneto-caloric properties of La0.8-xSmxSr0.2MnO3 (x = 0.0, 0.05, 0.1, and 0.15). Ceram Int 47(18):25304–25313

    Article  CAS  Google Scholar 

  16. Elghoul A, Krichene A, Boudjada NC, Boujelben W (2018) Rare earth effect on structural, magnetic and magnetocaloric properties of La(0.75)Ln(0.05)Sr(0.2)MnO(3) manganites. Ceram Int 44(11):12723–12730

    Article  CAS  Google Scholar 

  17. Elghoul A, Krichene A, Boudjada NC, Boujelben W (2018) Rare earth effect on the critical behavior of La(0.75)Ln(0.05)Sr(0.2)MnO(3) manganites. Ceram Int 44(12):14510–14517

    Article  CAS  Google Scholar 

  18. Ehsani M, Raoufi T, Razavi FJJOM, Materials M (2019) Impact of Gd ion substitution on the magneto-caloric effect of La0.6-xGdxSr0.4MnO3 (x = 0, 0.0125, 0.05, 0.10) manganites. J Magn Magn Mater 475:484–492

    Article  CAS  Google Scholar 

  19. Chebaane M, Bellouz R, Oumezzine M, Hlil EK, Fouzri A (2018) Copper-doped lanthanum manganite La0.65Ce0.05Sr0.3Mn1-xCuxO3 influence on structural, magnetic and magnetocaloric effects. Rsc Adv 8(13):7186–7195

    Article  CAS  Google Scholar 

  20. Qi L, Wang C, Li Y, Yu P, Gao Y, Wu D, Yang Y, Chen Q, Zhang H (2021) Effect of Gd doping on electrical transport properties of La0.8Sr0.2MnO3 polycrystalline ceramics. Ceram Int 47(5):5944–5950

    Article  CAS  Google Scholar 

  21. Dhahri A, Jemmali M, Dhahri E, Valente MA (2015) Structural characterization, magnetic, magnetocaloric properties and phenomenological model in manganite La0.75Sr0.1Ca0.15 MnO3 compound. J Alloy Compd 638:221–227

    Article  CAS  Google Scholar 

  22. Goldschmidt V (1926) Die gesetze der krystallochemie. Naturwissenschaften 14(21):477–485

    Article  CAS  Google Scholar 

  23. Vazquez-Vazquez C, Blanco MC, Lopez-Quintela M, Sanchez RD, Rivas J, Oseroff SB (1998) Characterization of La0.67Ca0.33MnO3+δ particles prepared by the sol-gel route. J Mater Chem 8(4):991–1000

    Article  CAS  Google Scholar 

  24. Ammar AAB, Cheikhrouhou-Koubaa W, Koubaa M, Nowak S, Lecoq H, Sicard L, Ammar S, Cheikhrouhou A (2014) Effect of sodium substitution on the physical properties of sol-gel made La0.65Ca0.35MnO3 ceramics. Mater Chem Phys 148(3):751–758

    Article  Google Scholar 

  25. Hussain I, Anwar MS, Kim JW, Chung KC, Koo BH (2016) Influence of La addition on the structural, magnetic and magnetocaloric properties in Sr2-xLaxFeMoO6 (0 ≤ x ≤ 0.3) double perovskite. Ceram Int 42(11):13098–13103

    Article  CAS  Google Scholar 

  26. Anwar M, Ahmed F, Koo BHJJOA (2014) Compounds, Structural distortion effect on the magnetization and magnetocaloric effect in Pr modified La0.65Sr0.35MnO3 manganite. J Alloy Compd 617:893–898

    Article  CAS  Google Scholar 

  27. Anwar MS, Ahmed F, Lee SR, Danish R, Koo BHJJJOAP (2013) Study of A-Site disorder dependent structural, magnetic, and magnetocaloric properties in La0.7-xSmxCa0.3MnO3 manganites. Jpn J Appl Phys 52(10S):10MC12

    Article  Google Scholar 

  28. Ehsani MH, Kameli P, Razavi FS, Ghazi ME, Aslibeiki B (2013) Influence of Sm-doping on the structural, magnetic, and electrical properties of La0.8-xSmxSr0.2MnO3 (0 < x < 0.45) manganites. J Alloy Compd 579:406–414

    Article  CAS  Google Scholar 

  29. Jerbi A, Krichene A, Thaljaoui R, Boujelben WJJOS, Magnetism N (2016) Structural, Magnetic, and Electrical Study of Polycrystalline PrSrNaMnO (x = 0.05 and 0.1). J Superconduct Nov Magn 29(1):123–132

    Article  CAS  Google Scholar 

  30. Messaoui I, Riahi K, Kumaresavanji M, Koubaa WC, Cheikhrouhou AJJOM, Materials M (2018) Potassium doping induced changes of magnetic and magnetocaloric properties of La0.78Cd0.22-xKxMnO3 (x = 0.00, 0.10, 0.15 and 0.20) manganites. J Magn Magn Mater 446:108–117

    Article  CAS  Google Scholar 

  31. Kim MS, Yang JB, Cai Q, Zhou XD, James WJ, Yelon WB, Parris PE, Buddhikot D, Malik SK (2005) Structure, magnetic, and transport properties of Ti-substituted La0.7Sr0.3MnO3. Phys Rev B 71(1):014433

    Article  Google Scholar 

  32. Bourouina M, Krichene A, Boudjada NC, Boujelben W (2016) Phase separation and magnetocaloric effect in Pr0.5-xGdxSr0.5MnO3 system. J Alloy Compd 680:67–72

    Article  CAS  Google Scholar 

  33. Bourouina M, Krichene A, Thaljaoui R, Pekala M, Boujelben W (2015) Effect of Gadolinium Doping on the Structural and Electrical Properties of Pr0.5-xGdxSr0.5MnO3(x = 0.0-0.1) Manganites. J J Superconduct Nov Magn 28(9):2743–2750

    Article  CAS  Google Scholar 

  34. Banerjee BJPl (1964) On a generalised approach to first and second order magnetic transitions. Phys Lett 12(1):16–17

    Article  Google Scholar 

  35. Jadli T, Mleiki A, Rahmouni H, Khirouni K, Hlil EK, Cheikhrouhou A (2021) Investigation of physical properties of manganite on example. Phys B: Condensed Matter 600:412548

    Article  CAS  Google Scholar 

  36. Krichene A, Boujelben W, Mukherjee S, Shah NA, Solanki PS (2019) Magnetic phase separation in polycrystalline Pr0.5-xBixSr0.5MnO3 (x ≤ 0.15). Ceram Int 45(3):3849–3856

    Article  CAS  Google Scholar 

  37. Guo Z, Huang H, Ding W, Du YJPRB (1997) Ferromagnetic state with spin canting in La0.52Gd0.15Ca0.33MnO3. Phys Rev B 56(17):10789

    Article  CAS  Google Scholar 

  38. Sun Y, Tong W, Liu N, Zhang YJJOM, Materials M (2002) Magnetocaloric effect in polycrystalline La0.5Gd0.2Sr0.3MnO3. J Magn Magn Mater 238(1):25–28

    Article  CAS  Google Scholar 

  39. Itoh M, Shimura T, Yu J-D, Hayashi T, Inaguma YJPRB (1995) Structure dependence of the ferromagnetic transition temperature in rhombohedral La1-xAxMnO3 (A = Na, K, Rb, and Sr). Phys Rev B 52(17):12522

    Article  CAS  Google Scholar 

  40. Radaelli P, Cox D, Marezio M, Cheong SW, Schiffer P, Ramirez AJPRl (1995) Simultaneous Structural, Magnetic, and Electronic Transitions in La1-xCaxMnO3 with x = 0.25 and 0.50. Phys Rev Lett 75(24):4488

    Article  CAS  Google Scholar 

  41. Makni Chakroun J, Cheikhrouhou Koubaa W, Koubaa M, Cheikhrouhou AJJOA (2015) Compounds, Impact of a small amount of vacancy in both lanthanum and calcium on the physical properties of nanocrystalline La0.7Ca0.3MnO3 manganite. J Alloy Compd 650:421–429

    Article  CAS  Google Scholar 

  42. Zhang X, Wen G, Wang F, Wang W, Yu C, Wu GJAPL (2000) Magnetic entropy change in Fe-based compound LaFe10.6 Si2.4. Appl Phys Lett 77(19):3072–3074

    Article  CAS  Google Scholar 

  43. Franco V, Blazquez JS, Conde A (2006) Field dependence of the magnetocaloric effect in materials with a second order phase transition: a master curve for the magnetic entropy change. Appl Phys Lett 89(22):222512

    Article  Google Scholar 

  44. Franco V, Conde A (2010) Scaling laws for the magnetocaloric effect in second order phase transitions: From physics to applications for the characterization of materials. Int J Refrig 33(3):465–473

    Article  CAS  Google Scholar 

  45. Krichene A, Boujelben W, Cheikhrouhou AJJOA (2013) compounds, Structural, magnetic and magnetocaloric properties in La0.5-xRexCa0.5MnO3 manganites (x = 0; 0.1 and Re= Gd, Eu and Dy). J Alloy Compd 550:75–82

    Article  CAS  Google Scholar 

  46. Al-Yahmadi I, Gismelssed A, Abdel-Latif I, Al Ma’Mari F, Al-Rawas A, Al-Harthi S, Al-Omari I, Yousf A, Widatallah H, ElZain MJJOA (2021) Compounds, Giant magnetocaloric effect and magnetic properties of nanocomposites of manganite Nd1-xSrxMnO3 (0.0 ≤ x ≤ 0.8) synthesized using modified sol-gel method. J Alloy Compd 857:157566

    Article  CAS  Google Scholar 

  47. Debnath J, Zeng R, Strydom A, Wang J, Dou SJJOA (2013) Compounds, Ideal Ericsson cycle magnetocaloric effect in (La0.9Gd0.1)0.67Sr0.33MnO3 single crystalline nanoparticles. J Alloy Compd 555:33–38

    Article  CAS  Google Scholar 

  48. Zarifi M, Kameli P, Mansouri M, Ahmadvand H, Salamati HJSSC (2017) Magnetocaloric effect and critical behavior in La0.8-xPrxSr0.2MnO3 (x = 0.2, 0.4, 0.5) manganites. Solid State Commun 262:20–28

    Article  CAS  Google Scholar 

  49. Elghoul A, Krichene A, Boudjada NC, Boujelben W (2019) Room temperature magnetocaloric effect in polycrystalline La0.75Bi0.05Sr0.2MnO3. Appl Phys A 125(11):1–5

    Article  CAS  Google Scholar 

  50. Bourouina M, Krichene A, Boudjada NC, Boujelben W (2017) Structural disorder effect on the structural and magnetic properties of Pr0.4Re0.1Sr0.5-yBayMnO3 manganites (Re = Pr, Sm, Eu, Gd, Dy and Ho). Ceram Int 43(15):12311–12320

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 52162038), the Guangxi Distinguished Experts Special Fund (No. 2019B06).

Author information

Authors and Affiliations

Authors

Contributions

BH: Data collecting, Writing Original draft preparation. WZ: Visualization, Investigation. XJ: Supervision. ZM: Supervision.

Corresponding author

Correspondence to Zhengguang Zou.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

The data obtained from this paper did not involve any animal experiments or human experiments.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, B., Zou, Z., Zhang, W. et al. Structural, magnetic and magnetocaloric effect investigation of La0.8-xGdxSr0.2MnO3(x = 0.00, 0.05, 0.075, 0.10) manganites near room temperature. J Sol-Gel Sci Technol 106, 790–803 (2023). https://doi.org/10.1007/s10971-023-06095-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-023-06095-w

Keywords

Navigation