Skip to main content
Log in

Preparation and performance of epoxy resin-based thermal conductive composites with different morphologies of ZnO

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The morphology of filler exerts a momentous influence on the construction of heat conduction path in polymer matrix. In this paper, ZnOs@T-ZnOw/EP composites was prepared by mixing spherical zinc oxide (ZnOs) powder with tetra-needle like ZnO whiskers (T-ZnOw). By changing the mixture ratio of ZnOs and T-ZnOw, the thermal conductivity of ZnOs@T-ZnOw composite was optimized. When the filler content was 11.08% vol., the thermal conductivity of the composite with 40 wt% ZnOs and 60 wt% T-ZnOw reached the maximum 0.52 W(m K)−1, which was 2.76 times higher than that of the pure epoxy resin. Meanwhile, the obtained composite showed good insulation properties. This experiment explored the influence of packing topography on the composition of thermal conductivity pathways and other properties, and revealed the thermal conductivity mechanism of filled thermal conductive composites.

Graphical Abstract

Figure (I) shows the SEM cross-sections of ZnOs@T-ZnOw/EP composites; Fig. (II) demonstrates the model diagram of filler structure under three different filling quantities; Fig. (III) presents a schematic diagram of the heat conduction mechanism; Fig. (IV) exhibits the thermal conductivities of pure EP and ZnO/EP composites.

Highlights

  • Optimized the heat conduction path of composite materials through the synergistic effect of fillers.

  • Zinc oxide powder with high sphericity was prepared by sol–gel method.

  • The excellent insulation and mechanical properties of epoxy resin are retained as much as possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article (and its Supplementary Information files).

References

  1. Ruan K, Shi X, Guo Y, Gu J (2020) Interfacial thermal resistance in thermally conductive polymer composites: a review. Compos Commun 22:100518

    Article  Google Scholar 

  2. Wang DZ, Lin Y, Hu DW, Jiang PK, Huang XY (2020) Multifunctional 3D-MXene/PDMS nanocomposites for electrical, thermal and triboelectric applications. Compos Part A Appl Sci Manuf 130:105754

    Article  CAS  Google Scholar 

  3. Pan S, Wu B, Qian G, Zhang J, Zheng Z, Xia R, Qian J (2022) Enhanced thermal conductivity with ultralow filler loading via constructing branch-type heat transfer network. Compos Commun 30:101060

    Article  Google Scholar 

  4. Feng T, Wang Y, Dong H, Piao J, Wang Y, Ren J, Chen W, Liu W, Chen X, Jiao C (2022) Ionic liquid modified boron nitride nanosheets for interface engineering of epoxy resin nanocomposites: improving thermal stability, flame retardancy, and smoke suppression. Polym Degrad Stab 199:109899

    Article  CAS  Google Scholar 

  5. Bian W, Yao T, Chen M, Zhang C, Shao T, Yang Y (2018) The synergistic effects of the micro-BN and nano-Al2O3 in micro-nano composites on enhancing the thermal conductivity for insulating epoxy resin. Compos Sci Technol 168:420–428

    Article  CAS  Google Scholar 

  6. Fink M, Collin D, Lobmann P (2017) Hybrid polymer incorporating BN particles: thermal, mechanical, and electrical properties. J Sol Gel Sci Technol 83:489–494

    Article  CAS  Google Scholar 

  7. Wu XD, Yu HJ, Wang L, Meng XG, Keshta BE (2022) A thermal conductive epoxy composite based on spherical MgO particles and boron nitride sheets. J Macromol Sci Part B Phys 61:595–610

    Article  CAS  Google Scholar 

  8. Wu J, Zhang T, Zhang C, Feng Y, Chi Q, Chen Q (2021) Research status of epoxy resin with high thermal conductivity. Mater Rev 35:13198–13204

    Google Scholar 

  9. Zhang H, Wu KF, Xiao GM, Du YX, Tang GH (2021) Experimental study of the anisotropic thermal conductivity of 2D carbon-fiber/epoxy woven composites. Compos Struct 267:113870

    Article  CAS  Google Scholar 

  10. Zhang L, Zhu WF, Qi GQ, Li HB, Qi DT, Qi SH (2022) Highly thermal conductive and electrically insulating epoxy composites based on zinc-oxide-coated silver nanowires. Polymers 14:3539

    Article  CAS  Google Scholar 

  11. Fang LJ, Wu W, Huang XY, He JL, Jiang PK (2015) Hydrangea-like zinc oxide superstructures for ferroelectric polymer composites with high thermal conductivity and high dielectric constant. Compos Sci Technol 107:67–74

    Article  CAS  Google Scholar 

  12. Liu R, Chen G, Li LF, Gao PF, Wang YP (2021) Preparation and thermal conductivity of ZnO/EP composites. Bull Chin Ceram Soc 104:1370–1377

    Google Scholar 

  13. Liang QZ, Xiu YH, Lin W, Moon KS, Wong CP, (2009) Epoxy/h-BN composites for thermally conductive underfill material. 59th electronic components and technology conference, IEEE, San Diego, CA, p 437

  14. Fu Y, Yao H, Lu S (2012) Performance of thermal conductive adhesive with different fillers. J Eng Thermophys 33:2137–2139

    CAS  Google Scholar 

  15. Mishra YK, Adelung R (2018) ZnO tetrapod materials for functional applications. Mater Today 21:631–651

    Article  CAS  Google Scholar 

  16. Zeng A, Zheng YY, Guo Y, Qiu SC, Cheng L (2012) Effect of tetra-needle-shaped zinc oxide whisker (T-ZnOw) on mechanical properties and crystallization behavior of isotactic polypropylene. Mater Des 34:691–698

    Article  CAS  Google Scholar 

  17. Zhao YC, Wang J, Liu JF, Song ZG, Xi XL (2017) Prediction of microwave absorption properties of tetrapod-needle zinc oxide whisker radar absorbing material without prior knowledge. J Appl Phys 122:025112

    Article  Google Scholar 

  18. Xu Y, Lin Z, Yang Y, Duan H, Zhao G, Liu Y, Hu Y, Sun R, Wong CP (2022) Integration of efficient microwave absorption and shielding in a multistage composite foam with progressive conductivity modular design. Mater Horiz 9:708–719

    Article  CAS  Google Scholar 

  19. Wu GF, Liu C, Lu CC, Zhang HX (2020) Lipophilic modification of T-ZnOw and optical properties of T-ZnOw/PVB composite films. Appl Phys A Mater Sci Process 126:259

    Article  CAS  Google Scholar 

  20. Shi HH, Ruan HX, Chen ZJ, Zhang Y, Zou CL, Zhang XC, Liu B, Xu MJ, Li B (2022) Shape memory, thermal conductivity, and mechanical property of polylactic acid and natural rubber composites reinforced by an inorganic thermal conductive network. J Appl Polym Sci 139:e52668

    Article  CAS  Google Scholar 

  21. Shi H, Hu G, Zhang Y, Pan Q, Liu Y, Zhang X (2022) Effect of dynamic vulcanization on mechanical properties, crystallinity and thermal stability of PLA/NR/T-ZnOw composites. China Plast Ind 50:163

    Google Scholar 

  22. Hong XQ, Wang XS, Li XM, Chen R, Yao X, Sun ZJ, et al. (2011) Damping properties of epoxy-embedded piezoelectric composites. 7th China international conference on high-performance ceramics (CICC 7), Xiamen, People’s Republic of China, p 1342

  23. Du Y, Ma D, Mao J, Yao J, Ma Q, Lu J, Luo F, Luo C, Li L (2021) Improving the antistatic and antibacterial properties of polypropylene via tetrapod-shaped ZnO@Ag particles. Polym Test 101:107301

    Article  CAS  Google Scholar 

  24. Chen X, Wang ZF, Wu J (2018) Processing and characterization of natural rubber/stearic acid-tetra-needle-like zinc oxide whiskers medical antibacterial composites. J Polym Res 25:48

    Article  Google Scholar 

  25. Cetiner D, Atar E, Derin B, Cimenoglu H (2020) Thermal oxidation of cold sprayed Ti-5Al-XZn coatings for tribological applications. Mater Lett 274:127959

    Article  CAS  Google Scholar 

  26. Liu H, Wu XF, Li XQ, Wang J, Fan XM (2014) Simple preparation of scale-like CuO nanoparticles coated on tetrapod-like ZnO whisker photocatalysts. Chin J Catal 35:1997–2005

    Article  CAS  Google Scholar 

  27. Allouni ZE, Cimpan MR, Hol PJ, Skodvin T, Gjerdet NR (2009) Agglomeration and sedimentation of TiO2 nanoparticles in cell culture medium. Colloids Surf B Biointerfaces 68:83–87

    Article  CAS  Google Scholar 

  28. Bruinink A, Wang J, Wick P (2015) Effect of particle agglomeration in nanotoxicology. Arch Toxicol 89:659–675

    Article  CAS  Google Scholar 

  29. Qi W, Liu M, Wu J, Xie Q, Chen L, Yang X, Shen B, Bian X, Song WL (2022) Promoting the thermal transport via understanding the intrinsic relation between thermal conductivity and interfacial contact probability in the polymeric composites with hybrid fillers. Compos Part B Eng 232:109613

    Article  CAS  Google Scholar 

  30. Hu GS, Ma YL, Wang BB (2009) Mechanical properties and morphology of nylon 11/tetrapod-shaped zinc oxide whisker composite. Mater Sci Eng A Struct Mater Prop Microstruct Process 504:8–12

    Article  Google Scholar 

  31. Yuan FY, Zhang HB, Li XF, Li XZ, Yu ZZ (2013) Synergistic effect of boron nitride flakes and tetrapod-shaped ZnO whiskers on the thermal conductivity of electrically insulating phenol formaldehyde composites. Compos Part A Appl Sci Manuf 53:137–144

    Article  CAS  Google Scholar 

  32. Liu R, Li LF, Chen G, Gao PF, Ma X, Wang YP (2021) Preparation and performance research of zinc oxide@graphene/epoxy thermally conductive insulating composite. J Funct Mater 6:6006–6012

    Google Scholar 

  33. Jin Y, Yu X, Tian Y, Yang W (2012) Preparation and properties of thermally conductive and antistatic potassium titanate whiskers filled polypropylene composites. Trans Mater Heat Treat 33:35–39

    CAS  Google Scholar 

  34. Yong X, Zhang LT (2010) Examining different NEMD methods in simulating nanoscale fluid at high shear rates. Proc Inst Mech Eng Part N J Nanomater Nanoeng Nanosyst 224:19–29

    CAS  Google Scholar 

  35. Zha JW, Dang ZM, Zhao K, Zheng XQ, Li ST (2012) Prominent nonlinear electrical conduction characteristic in T-ZnOw/PTFE composites with low threshold field. IEEE Trans Dielectr Electr Insul 19:567–573

    Article  CAS  Google Scholar 

  36. Chaudhry AU, Mabrouk AN, Abdala A (2020) Thermally enhanced polyolefin composites: fundamentals, progress, challenges, and prospects. Sci Technol Adv Mater 21:737–766

    Article  CAS  Google Scholar 

  37. Asakuma Y, Yamamoto T (2016) Thermal analysis of resin composites with ellipsoidal filler considering thermal boundary resistance. J Therm Sci 25:424–430

    Article  Google Scholar 

  38. Ozmihci FO, Balkose D (2013) Effects of particle size and electrical resistivity of filler on mechanical, electrical, and thermal properties of linear low density polyethylene-zinc oxide composites. J Appl Polym Sci 130:2734–2743

    Article  CAS  Google Scholar 

  39. Peng X, Zhu DG, Li YX, Zhou JM, Lv Z, Guo PC (2016) Fabrication and property of AlN-BN composites by hot isostatic pressing. J Inorg Mater 31:535–541

    Article  CAS  Google Scholar 

  40. Hofmeister AM, Dong JJ, Branlund JM (2014) Thermal diffusivity of electrical insulators at high temperatures: evidence for diffusion of bulk phonon-polaritons at infrared frequencies augmenting phonon heat conduction. J Appl Phys 115:163517

    Article  Google Scholar 

  41. Harada S, Kosaka N, Tagawa M, Ujihara T (2021) Ordered arrangement of planar faults with picoscale perfection in titanium oxide natural superlattices. J Phys Chem C 125:11175–11181

    Article  CAS  Google Scholar 

  42. Lee E, Cho CH, Hwang SH, Kim MG, Han JW, Lee H, Lee JH (2019) Improving the vertical thermal conductivity of carbon fiber-reinforced epoxy composites by forming layer-by-layer contact of inorganic crystals. Materials 12:3092

    Article  CAS  Google Scholar 

  43. Giri A, Niemelä J-P, Tynell T, Gaskins JT, Donovan BF, Karppinen M, Hopkins PE(2016) Heat-transport mechanisms in molecular building blocks of inorganic/organic hybrid superlattices Phys Rev B 93:115310

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Scientific Research Found of Sichuan Provincial Education Department (No. 17ZA0395), the Research Support Fund of Longshan Academic Talents (18LZX679).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liangfeng Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G., Li, L., Gao, P. et al. Preparation and performance of epoxy resin-based thermal conductive composites with different morphologies of ZnO. J Sol-Gel Sci Technol 107, 375–387 (2023). https://doi.org/10.1007/s10971-023-06091-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-023-06091-0

Keywords

Navigation