Skip to main content
Log in

The use of sol–gel processes in the development of supported catalysts

  • Review Paper: Sol–gel and hybrid materials for catalytic, photoelectrochemical and sensor applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The use of sol–gel processes is discussed in the development of silica-supported/encapsulated catalysts applied for dry methane reforming (DRM), hydrogenation, hydrolysis, oxidation, photocatalysis and polymerization processes. The systems are discussed in terms of their synthesis routes and performance/applications. Base-catalyzed sol–gel is the most commonly used route among hydrolytic and nonhydrolytic processes, and it results in spherical and compact encapsulated catalysts. Moreover, microspherical, microcapsule and bimetallic core catalysts are exclusive to this route. New methods that use mild conditions for oxidation via enzymes and yeast cells are reported; these methods use a basic route followed by a neutral pH step with no alcohol formation. Nonhydrolytic routes are still relevant for the encapsulation of metallocenes. Silica encapsulation enables a broad range of applications for supported catalysts; therefore, industrial catalyst innovation continues to yield catalysts made of more efficient and recyclable materials for applications ranging from the reformation of methane-forming syngas to biosensors obtained through biocatalytic activities via enzymes.

Graphical abstract

Highlights

  • Research conducted within the last 5 years on the fabrication of supported catalysts using sol–gel routes is discussed.

  • Examples of sol–gel supported catalysts for dry methane reforming, hydrogenation, hydrolysis, oxidation, photocatalysis and polymerization are provided.

  • Encapsulation is aimed at providing supported catalysts that are stable and recyclable and have low production costs.

  • Mild conditions that involve the use of a two-step route, with a basic sol–gel route followed by a neutral pH step, show new possibilities for enzyme and yeast cell encapsulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4

Similar content being viewed by others

References

  1. Catalyst (2009) IUPAC Compendium of Chemical Terminology. Blackwell Scientific Publications, Oxford, https://doi.org/10.1351/goldbook.C00876. ISBN 978-0-9678550-9-7

    Book  Google Scholar 

  2. Business Wire (1961), San Francisco. https://www.businesswire.com/news/home/20210615005560/en/Global-Industrial-Catalyst-Market-Report-2021-Industry-Trends-Share-Size-Growth-Opportunity-and-Forecast-2015-2020-2021-2026--ResearchAndMarkets.com Accessed 07.12.2021

  3. Business Wire (1961), San Francisco. https://www.marketwatch.com/press-release/industrial-catalyst-market-size-2021-with-cagr-of-26-top-growth-companies-basf-johnson-matthey-clariant-and-end-user-swot-analysis-in-industry-2026-2021-06-28 Accessed 07.12.2021

  4. Global Supported Catalyst Market by Type (Nickel Based Supported Catalysts, Precious Metal Based Supported Catalysts, Other Supported Catalysts), By Application (Oil And Gas, Water And Wastewater, Chemical Process, Others) And By Region (North America, Latin America, Europe, Asia Pacific and Middle East & Africa), Forecast From 2022 To 2030. https://dataintelo.com/report/global-supported-catalyst-market/?utm_campaign=copy

  5. Brown T, Lemay H, Bursten B, Murphy C, Woodward P, Stoltzfus M (2017) Chemistry: the central science. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  6. IUPAC (1997) Compendium of Chemical Terminology, 2nd ed. (the “Gold Book”). Compiled by A. D. McNaught and A. Wilkinson. Blackwell Scientific Publications, Oxford, Online version (2019-) created by S. J. Chalk. ISBN 0-9678550-9-8. https://doi.org/10.1351/goldbook

    Book  Google Scholar 

  7. Hüsing N, Schubert U (2004) Synthesis of Inorganic Materials, 2nd Edition. Wiley-VCH, Vienna

    Google Scholar 

  8. Parashar M, Shukla VK, Singh R (2020) Metal oxides nanoparticles via sol-gel method: a review on synthesis, characterization and applications. J Mater Sci Mater Electron 31:3729–3749

    Article  CAS  Google Scholar 

  9. Navas D, Fuentes S, Castro-Alvarez A, Chavez-Ang E (2021) A review on Sol-Gel Synthesis of Perovskite and Oxide Nanomaterials. Gels 7:275

    Article  CAS  Google Scholar 

  10. Lee J-H, Park SJ (2020) Recent advances in preparations and applications of carbon aerogels: A review. Carbon 163:1–18

    Article  CAS  Google Scholar 

  11. Gao X-R, Xing Z, Li ZJ, Dong Z-Y, Ju Z-C, Guo C-L (2020) A review on recent advances in carbon aerogels: their preparation and use in alkali-metal ion batteries. N Carbon Mater 35:486–507

    Article  CAS  Google Scholar 

  12. Jongkind LJ, Caumes X, Hartendorp APT, Reek JNH (2018) Ligand Template Strategies for Catalyst Encapsulation. Acc Chem Res 51(9):2115–2128. https://doi.org/10.1021/acs.accounts.8b00345

    Article  CAS  Google Scholar 

  13. Otor HO, Steiner JB, García-Sancho C, Alba-Rubio AC (2020) Encapsulation Methods for Control of Catalyst Deactivation: A Review. ACS Catal 10(14):7630–7656. https://doi.org/10.1021/acscatal.0c01569

    Article  CAS  Google Scholar 

  14. Dragnea D, Gudovan D, Zahara E, Bildea CS (2018) The Treatment of Aluminium Pigments with Inorganic Polymers for Environment-Friendly Applications. Rev Chim 69(12):3353–3360. https://doi.org/10.37358/RC.18.12.6748

  15. Ashraf MA, Khan AM, Ahmad M, Sarfraz M (2015) Effectiveness of silica based sol-gel microencapsulation method for odorants and flavors leading to sustainable environment. Front Chem 3:42. https://doi.org/10.3389/fchem.2015.00042

    Article  CAS  Google Scholar 

  16. Meistelman M, Adhikary J, Burg A, Shamir D, Gershinsky G, Meyerstein D, Albo Y (2017) Ag0 and Au0 nanoparticles encapsulated in sol-gel matrices as catalysts in reductive de-halogenation reactions. ChimicaOggi/Chem Today 35(5):23–26

    CAS  Google Scholar 

  17. Pagliaro M (2020) Sol–gel catalysts for synthetic organic chemistry: milestones in 30 years of successful innovation. J Sol-Gel SciTechnol 95:551–561. https://doi.org/10.1007/s10971-020-05266-3

    Article  CAS  Google Scholar 

  18. Ward DA, Ko EI (1995) Preparing Catalytic Materials by the Sol-Gel Method. Ind Eng Chem Res 34(2):421–433. https://doi.org/10.1021/ie00041a001

    Article  CAS  Google Scholar 

  19. Ciriminna R, Pagliaro M (2004) Catalysis by Sol-Gels: An Advanced Technology for Organic Chemistry. Curr Org Chem 8:1851. https://doi.org/10.2174/1385272043369449

    Article  CAS  Google Scholar 

  20. Wang X, Ahmed NB, Alvarez G, Tuttolomondo MV, Helary C, Desimone M, Coradin T (2015) Sol-Gel Encapsulation of Biomolecules and Cells for Medicinal Applications. Curr Top Med Chem 15(3):223–244. https://doi.org/10.2174/1568026614666141229112734

    Article  CAS  Google Scholar 

  21. Pierre AC (2009) The Sol–Gel Encapsulation of Enzymes. Biocatal Biotransform 22(3):145–170. https://doi.org/10.1080/10242420412331283314

    Article  CAS  Google Scholar 

  22. Sepeur S (2008). Silane-technology as the key to Chemical Nanotechnology, In: Nanotechnology: Technical Basics and Applications, Vincentz Network, Hannover: 19-29

  23. Musgo J, Echeverría JC, Estella J, Laguna M, Garrido JJ (2019) Ammonia-catalyzed silica xerogels: Simultaneous effects of pH, synthesis temperature, and ethanol: TEOS and water: TEOS molar ratios on textural and structural properties. Microporous Mesoporous Mater 118(1–3):280–287. https://doi.org/10.1016/j.micromeso.2008.08.044

    Article  CAS  Google Scholar 

  24. Debecker DP, Mutin PH (2012) Non-hydrolytic sol-gel routes to heterogeneous catalysts. Chem Soc Rev 41:3624–3650. https://doi.org/10.1039/C2CS15330K

    Article  CAS  Google Scholar 

  25. Winter R, Chan J-B, Frattini R, Jonas J (1988) The effect of fluoride on the sol-gel process. J Non-Crystalline Solids 105(3):214–222. https://doi.org/10.1016/0022-3093(88)90310-9

    Article  CAS  Google Scholar 

  26. Abdullah B, AbdGhani NA, Vo D-VN. Recent advances in dry reforming of methane over Ni-based catalysts. J Clean Prod 162:170–185. https://doi.org/10.1016/j.jclepro.2017.05.176

  27. Owgi AHK, Jalil AA, Hussain I, Hassan NS, Hambali HU, Siang TJ, Vo D-VN (2021) Catalytic systems for enhanced carbon dioxide reforming of methane: a review. Environ Chem Lett https://doi.org/10.1007/s10311-020-01164-w

  28. Qin Z, Chen J, Xie X, Xuan L, Hongbing J (2020) CO2 reforming of CH4 to syngas over nickel-based catalysts. Environ ChemLett 18:997–1017. https://doi.org/10.1007/s10311-020-00996-w

    Article  CAS  Google Scholar 

  29. Singh R, Dhir A, Mohapatra SK, Mahla SK (2020) Dry reforming of methane using various catalysts in the process: review. Biomass Conv Bioref 10:567–587. https://doi.org/10.1007/s13399-019-00417-11

    Article  CAS  Google Scholar 

  30. Gunduz-Meric G, Kaytakoglu S, Degirmenci L (2020) Catalytic performance of silica covered bimetallic nickel-iron encapsulated core-shell microspheres for hydrogen production. Int J Hydrog Energy 45(60):34547–34556. https://doi.org/10.1016/j.ijhydene.2020.04.189

    Article  CAS  Google Scholar 

  31. Gunduz-Meric G, Kaytakoglu S, Degirmenci L (2019) Ni,Co/SiO2 and Ni/SiO2,Co bimetallic microsphere catalysts indicating high activity and stability in the dry reforming of methane. React Kinet Mech Catal 129(1):403–419. https://doi.org/10.1007/s11144-019-01708-4

    Article  CAS  Google Scholar 

  32. Damouny CW, Hayek N, Khoury C, Gazit OM (2019) Composite Assisted Approach for the Synthesis of Ni@SiO2-ZrO2Catalysts and Their Performance Evaluation in Methane Dry Reforming. ACS Appl Energy Mater 2(9):6505–6512. https://doi.org/10.1021/acsaem.9b01086

    Article  CAS  Google Scholar 

  33. Du C, Hondo E, Chizema LG, Wang C, Tong M, Xing C, Yang R, Lu P, Tsubaki N (2020) Developing Cu-MOR@SiO2 Core-Shell Catalyst Microcapsules for Two-Stage Ethanol Direct. Ind Eng Chem Res 59(8):3293–3300. https://doi.org/10.1021/acs.iecr.9b05663

    Article  CAS  Google Scholar 

  34. Wei J, Zou L, Li Y (2019) Facile synthesis of hollow structured mesoporous silica nanoreactors with confined ultra-small Pd NPs for efficient hydrogenation reactions. J Porous Mater 26(1):157–162. https://doi.org/10.1007/s10934-018-0632-1

    Article  CAS  Google Scholar 

  35. Ye R-P, Lin L, Chen C-C, Yang J-X, Li F, Zhang X, Li D-J, Qin Y-Y, Zhou Z, Yao Y-G (2018) Synthesis of Robust MOF-Derived Cu/SiO2 Catalyst with Low Copper Loading via Sol-Gel Method for the Dimethyl Oxalate Hydrogenation Reaction. ACS Catal 8(4):3382–3394. https://doi.org/10.1021/acscatal.8b00501

    Article  CAS  Google Scholar 

  36. Nesterov NS, Smirnov AA, Pakharukova VP, Yakovlev VA, Martyanov ON (2021) Advanced green approaches for the synthesis of NiCu-containing catalysts for the hydrodeoxygenation of anisole. Catal Today 379:262–271

    Article  CAS  Google Scholar 

  37. Caresani JRF, Dallegrave A, dos Santos JHZ (2021). Amylases encapsulated in organosilane-modified silicas prepared by sol–gel: evaluation of starch saccharification. Journal of Sol-Gel Science and Technology. https://doi.org/10.1007/s10971-020-05446-1

  38. Caresani JRF, Dallegrave A, dos Santos JHZ (2019) Amylases immobilization by sol–gel entrapment: application for starch hydrolysis. J Sol-Gel Sci Technol 94:229–240. https://doi.org/10.1007/s10971-019-05136-7

    Article  CAS  Google Scholar 

  39. Escobar S, Bernal C, Bolivar JM, Nidetzky B, López-Gallego F, Mesa M (2018) Understanding the silica-based sol-gel encapsulation mechanism of Thermomyceslanuginosus lipase: The role of polyethylenimine. Mol Catal 449:106–113. https://doi.org/10.1016/j.mcat.2018.02.024

    Article  CAS  Google Scholar 

  40. Pavel I-A, Prazeres SF, Montalvo G, A Ruiz CG, Nicolas V, Celzard A, Dehez F, Canabady-Rochelle L, Canilho N, Pasc A (2017) Effect of Mesovs Macro Size of Hierarchical Porous Silica on the Adsorption and Activity of Immobilized β-Galactosidase. Langmuir 33(13):3333–3340. https://doi.org/10.1021/acs.langmuir.7b00134

    Article  CAS  Google Scholar 

  41. Yildiz H, Ozyilmaz E, Bhatti AA, Yilmaz M (2017) Enantioselective resolution of racemic flurbiprofen methyl ester by lipase encapsulated mercaptocalix[4]arenes capped Fe3O4 nanoparticles. Bioprocess Biosyst Eng 40(8):1189–1196. https://doi.org/10.1007/s00449-017-1779-x

    Article  CAS  Google Scholar 

  42. Ozyilmaz E, Bayrakci M, Yilmaz M (2016) Improvement of catalytic activity of Candida rugosa lipase in the presence of calix[4]arene bearing iminodicarboxylic/phosphonic acid complexes modified iron oxide nanoparticles. Bioorg Chem 65:1–8. https://doi.org/10.1016/j.bioorg.2015.12.001

    Article  CAS  Google Scholar 

  43. Beatriz B, Paula G-P, Francisco B-V. Immobilization of Enzymes: A Literature Survey. In. Jose M. Guisan (ed.), Immobilization of Enzymes and Cells: Third Edition, Methods in Molecular Biology, vol. 1051, pp. 15–17. https://doi.org/10.1007/978-1-62703-550-7_2

  44. El Fergani M, Candu N, Tudorache M, Granger P, Parvulescu VI, Coman, SM (2020). Optimized Nb-Based Zeolites as Catalysts for the Synthesis of Succinic Acid and FDCA. Molecules (Basel, Switzerland) 25(21). https://doi.org/10.3390/molecules25214885

  45. Podolean I, Kuncser V, Gheorghe N, Macovei D, Parvulescu VI,Coman SM (2013) Ru-based magnetic nanoparticles (MNP) for succinic acid synthesis from levulinic acid. Green Chem 15:3077–3082. https://doi.org/10.1039/C3GC41120F

    Article  CAS  Google Scholar 

  46. Kato K, Lee S, Nagata F (2020) Efficient enzyme encapsulation inside sol-gel silica sheets prepared by poly-L-lysine as a catalyst. J Asian Ceram Societies 8(2):396–406. https://doi.org/10.1080/21870764.2020.1747167

    Article  Google Scholar 

  47. Pylypchuk IV, Daniel G, Kessler VG, Seisenbaeva GA (2020) Removal of diclofenac, paracetamol, and carbamazepine from model aqueous solutions by magnetic sol–gel encapsulated horseradish peroxidase and lignin peroxidase composites. Nanomaterials 10(2):282. https://doi.org/10.3390/nano10020282

    Article  CAS  Google Scholar 

  48. Lavrova DG, Kamanina OA, Machulin AV, Suzina NE, Alferov VA, Ponamoreva ON (2020). Effect of polyethylene glycol additives on structure, stability, and biocatalytic activity of ormosil sol–gel encapsulated yeast cells. Journal of Sol-Gel Science and Technology 88(1). https://doi.org/10.1007/s10971-017-4333-z

  49. Tananaiko O, Trofimchuk A, Nechiporuk Y, Garbuz V, Muratov V, Vasil’ev O, Duda T, Biloivan O (2018). Planar Electrodes Modified by Nanodiamonds and Biocomposite Silica-Choline Oxidase Film for Choline Determination. 2018 IEEE 38th International Conference on Electronics and Nanotechnology, ELNANO 2018—Proceedings 8477433:411–416. https://doi.org/10.1109/ELNANO.2018.8477433

  50. Yuan M, Li D, Zhao X, Ma W, Kong K, Gu Q, Hou Z (2018) Selective oxidation of glycerol with hydrogen peroxide using silica-encapsulated heteropolyacid catalyst. Acta Phys Chim Sin 34(8):886–895. https://doi.org/10.3866/PKU.WHXB201711151

    Article  CAS  Google Scholar 

  51. Gill JK, Orsat V, Kermasha S (2018) Screening trials for the encapsulation of laccase enzymatic extract in silica sol-gel. J Sol-Gel Sci Technol 85(3):657–663. https://doi.org/10.1007/s10971-017-4575-9

    Article  CAS  Google Scholar 

  52. Soni Y, Kumar AEA, Nayak C, Deepak FL, Vinod CP (2017) A Convenient Route for Au@Ti-SiO2 Nanocatalyst Synthesis and Its Application for Room Temperature CO Oxidation. J Phys Chem C 121(9):4946–4957. https://doi.org/10.1021/acs.jpcc.6b10202

    Article  CAS  Google Scholar 

  53. Li X, Cai T, Kang E-T (2016) Yolk-Shell Nanocomposites of a Gold Nanocore Encapsulated in an ElectroactivePolyaniline Shell for Catalytic Aerobic Oxidation. ACS Omega 1(1):160–167. https://doi.org/10.1021/acsomega.6b00062

    Article  CAS  Google Scholar 

  54. Nogueira RFP, Jardim WF (1998) Heterogeneous photocatalysis and its environmental application. Química Nova 21:1. https://doi.org/10.1590/S0100-40421998000100011. (in portuguese)

    Article  Google Scholar 

  55. Coronado JM (2013) A Historical Introduction to Photocatalysis. In: Coronado J, Fresno F, Hernández-Alonso M, Portela R (eds) Design of Advanced Photocatalytic Materials for Energy and Environmental Applications. Green Energy and Technology. Springer, London, https://doi.org/10.1007/978-1-4471-5061-9_1

    Chapter  Google Scholar 

  56. Jacinto MJ, Ferreira LF, Silva VC (2020) Magnetic materials for photocatalytic applications—a review. J Sol-Gel Sci Technol 96:1–14. https://doi.org/10.1007/s10971-020-05333-9

    Article  CAS  Google Scholar 

  57. Wilson M, Cheng CYC, Oswald G, Srivastava R, Beaumont SK, Badyal JPS (2017) Magnetic recyclable microcomposite silica-steel core with TiO2 nanocomposite shell photocatalysts for sustainable water purification. Colloids Surf A Physicochemical Eng Asp 523:27–37. https://doi.org/10.1016/j.colsurfa.2017.03.034

    Article  CAS  Google Scholar 

  58. Escobar CC, Dallegrave A, Lasarin MA, dos Santos JHZ (2015) The sol–gel route effect on the preparation of molecularly imprinted silica-based materials for selective and competitive photocatalysis. Colloids Surf A Physicochemical Eng Asp 486:96–105. https://doi.org/10.1016/j.colsurfa.2015.09.027

    Article  CAS  Google Scholar 

  59. Fisch AG, Cardozo NSM, Secchi AR, Stedile FC, Livotto PR, de Sá DS, da Rocha ZN, dos Santos JHZ (2009) Immobilization of metallocenewithinsilica–titania by a non-hydrolytic sol–gel method. Appl Catal A 354:88–101

    Article  CAS  Google Scholar 

  60. Capeletti LB, Alves MCM, Cardoso MB, dos Santos JHZ (2018) Hybrid silica based catalysts prepared by the encapsulation of zirconocene compound via non-hydrolytic sol-gel method for ethylene polymerization. Appl Catal A Gen 560:225–235. https://doi.org/10.1016/j.apcata.2018.03.013

    Article  CAS  Google Scholar 

  61. Heck CA, Stedile FC, dos Santos JHZ (2021) Metallocene encapsulated within a hybrid silica-polystyrene support. Iran Polym J 30:495–503. https://doi.org/10.1007/s13726-021-00906-z

    Article  CAS  Google Scholar 

  62. Ullmann MA. Non-Hydrolytic Sol-Gel Synthesis in the Heterogenization of Metallocenes in Hybrid Silicas for Polyethylene Production (2019).Thesis (Chemistry PhD) - Programa de Pós-Graduação em Química da Universidade Federal do Rio Grande do Sul, Porto Alegre (in Portuguese)

  63. Fisch AG, da Silveira Jr N, Cardozo NSM, Secchi AR, dos Santos JHZ, Soares JBP (2013) Direct production of ultra-high molecular weight polyethylene with oriented crystalline microstructures. J Mol Catal A Chem 366:74–83

    Article  CAS  Google Scholar 

  64. Fidalgo A, Ciriminna R, Ilharco LM, Pagliaro M (2005) Role of the Alkyl−Alkoxide Precursor on the Structure and Catalytic Properties of Hybrid Sol−Gel Catalysts. Chem Mater 17(26):6686–6694. https://doi.org/10.1021/cm051954x

    Article  CAS  Google Scholar 

  65. Xu P, Wu Z, Dai W, Wang Y, Zheng M, Su X, Teng Z (2021) Synthesis of multiple Ag nanoparticles loaded hollow mesoporous carbon spheres for highly efficient and recyclable catalysis. Microporous Mesoporous Mater 314:110856. https://doi.org/10.1016/j.micromeso.2020.110856

    Article  CAS  Google Scholar 

  66. Bhaskaruni SVHS, Maddila S, Gangu KK, Jonnalagadda SB (2020) A review on multi-component green synthesis of N-containing heterocycles using mixed oxides as heterogeneous catalysts. Arab J Chem 13(1):1142–1178

    Article  CAS  Google Scholar 

  67. Patrow JG, Yukun C, Pyles CG, Luo B, Tonks IA, Massari AM (2020) Spectroscopic Study of Sol-Gel Entrapped TrirutheniumDodecacarbonylCatalyst Reveals Hydride Formation. J Phys Chem Lett 11(17):7394–7399. https://doi.org/10.1021/acs.jpclett.0c02316

    Article  CAS  Google Scholar 

  68. Martin LS, Ceron A, Oliveira PC, Zanin GM, de Castro HF (2018) Different organic components on silica hybrid matrices modulate the lipase inhibition by the glycerol formed in continuous transesterification reactions. J Ind Eng Chem 62:462–470

    Article  CAS  Google Scholar 

  69. Shalygin AS, Nuzhdin AL, Bukhtiyarova GA, Martyanov ON (2017) Preparation of HKUST-1@silica aerogel composite for continuous flow catalysis. J Sol-Gel Sci Technol 84:446–452. https://doi.org/10.1007/s10971-017-4455-3

    Article  CAS  Google Scholar 

  70. Ding M, Jiang H (2021) Improving Water Stability of Metal-Organic Frameworks by a General Surface Hydrophobic Polymerization. CCS Chem 3(8):2740–2748. https://doi.org/10.31635/ccschem.020.202000515

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financed by FAPERGS (Project 19/2551-0001869-0). AR is grateful for his PIBIC grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. H. Z. dos Santos.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rex, A., dos Santos, J.H.Z. The use of sol–gel processes in the development of supported catalysts. J Sol-Gel Sci Technol 105, 30–49 (2023). https://doi.org/10.1007/s10971-022-05975-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-022-05975-x

Keywords

Navigation