Skip to main content
Log in

Effects of Al doping on physical properties and photocatalytic activity of neodymium orthoferrite

  • Original Paper: Sol-gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Single-phase nanoparticles of NdFe1−xAlxO3 being x = 0, 0.1, 0.2, 0.3, 0.4 & 0.5 were synthesized via sol-gel procedure. The average crystallites size of NdFe1−xAlxO3 was derived from X-ray diffraction, belong to range 56–31 nm. The morphology of the samples was investigated by Field Emission Scanning Electron Microscopy and Energy Dispersive Spectroscopy. Furthermore, the dielectric variations of the compounds versus frequency and temperature were measured by an LCR meter. Dielectric versus temperature curves showed that the TN values of the samples decreased with increasing Al content. Next, the magnetic behavior of the samples were analyzed by using vibrating sample magnetometer (VSM), field cooling (FC) and zero-field cooling (ZFC) analysis. VSM loops illustrated that NdFe0.7Al0.3O3 NPs had a large amount of Mnet, Mr and Hc up to 0.70 emu/g, 0.09 emu/g and 0.21 T, respectively. The TSR for NdFeO3 nanoparticles was close to 163 K decreasing as function of Al doping increasing. Deferential Reflectance Spectroscopy curves were used to determine the band gaps energy (Eg). Eg values were derived being between visible up to ultraviolet. Investigation of the photocatalytic behaviors of these samples showed that the NdFe0.8Al0.2O3 had the best photocatalytic activity. The kinetic energy magnitude is discussed.

Graphical abstract

Highlights

  • NdFe1–xAlxO3 NPs were produced by sol-gel process to have nanosize particles without any impurities.

  • NdFe1–xAlxO3 NPs were prepared in an orthorhombic structure. And the crystallite became smaller with growing the amount of Al with average size of 56–31 nm.

  • TN values of the samples decreased with increasing Al content.

  • NdFe0.7Al0.3O3 NPs showed the largest amount of Mnet, Mr and Hc.

  • TSR of NdFeO3 was close to 163 K and it decreased with increasing Al content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Ullmann H, Trofimenko N, Tietz F, Stover D, Ahmad-Khanlou A (2000) Correlation between thermal expansion and oxide ion transport in mixed conducting perovskite-type oxides for SOFC cathodes. Solid State Ion 138:79–90. https://doi.org/10.1016/S0167-2738(00)00770-0

    Article  CAS  Google Scholar 

  2. Toan NN, Saukko S, Lantto V (2003) Gas sensing with semiconducting perovskite oxide LaFeO3. Phys B 327:279–282. https://doi.org/10.1016/S0921-4526(02)01764-7

    Article  CAS  Google Scholar 

  3. Dragomir M, Valant M (2013) Synthesis peculiarities of BiVO3 perovskite. Ceram Int 39:5963–5966. https://doi.org/10.1016/j.ceramint.2012.12.035

    Article  CAS  Google Scholar 

  4. Sha L, Miao J, Wu SZ, Xu XG, Jiang Y, Qiao LJ (2013) Double-perovskite multiferroic Bi2FeCrO6 polycrystalline thin film: The structural, multiferroic, and ferroelectric domain properties. J Alloy Comp 554:299–303. https://doi.org/10.1016/j.jallcom.2012.11.187

    Article  CAS  Google Scholar 

  5. Niu X, Li H, Liu G (2005) Preparation, characterization and photocatalytic properties of REFeO3 (RE = Sm, Eu, Gd). J Mol Catal A: Chem 232:89–93. https://doi.org/10.1016/j.molcata.2005.01.022

    Article  CAS  Google Scholar 

  6. Tang P, Chen H, Lv C, Wang K, Wang Y (2017) Microwave synthesis of nanoparticulate EuFeO3 and its visible light photocatalytic activity. Integr Ferroelectr 181:49–54. https://doi.org/10.1080/10584587.2017.1352312

    Article  CAS  Google Scholar 

  7. Kozakov AT, Kochur AG, Nikolsky AV, Googlev KA, Smotrakov VG, Eremkin VV (2011) Chemical bonding in the Bi1−xSrxFeO3±y system by X-ray photoelectron and Mössbauer spectroscopy. J Electron Spectrosc Relat Phenom 184:508–516. https://doi.org/10.1016/j.elspec.2013.08.006

    Article  CAS  Google Scholar 

  8. Prasad BV, Rao GN, Chen JW, Suresh D (2011) Abnormal high dielectric constant in SmFeO3 semiconductor ceramics. Mater Res Bull 46:1670–1673. https://doi.org/10.1016/j.materresbull.2011.06.001

    Article  CAS  Google Scholar 

  9. Mir SA, Ikram M, Asokan K (2014) Structural, optical and dielectric properties of Ni substituted NdFeO3. Optik 125:6903–6908. https://doi.org/10.1016/j.ijleo.2014.08.050

    Article  CAS  Google Scholar 

  10. Marezio M, Dernier PD (1971) The bond lengths in LaFeO3. Mater Res Bull 6:23. https://doi.org/10.1016/0025-5408(71)90155-3

    Article  CAS  Google Scholar 

  11. Sultan K, Ikram M, Asokan K (2014) Structural, optical and dielectric study of Mn doped PrFeO3 ceramics. Vacuum 99:251–258. https://doi.org/10.1016/j.vacuum.2013.06.014

    Article  CAS  Google Scholar 

  12. Sharannia MP, De S, Singh R, Das A, Nirmala R, Santhosh PN (2017) Observation of magnetization and exchange biasreversals in NdFe0.5Cr0.5O3. J Magne Magn Mater 430:109–113. https://doi.org/10.1016/j.jmmm.2016.12.035

    Article  CAS  Google Scholar 

  13. Habib Z, Majid K, Ikram M, Sultan K, Mir SA, Asokan K (2016) Influence of Ni substitution at B-site for Fe3+ ions on morphological, optical, and magnetic properties of HoFeO3 ceramics. Appl Phys A 122:550–558. https://doi.org/10.1007/s00339-016-0082-z

    Article  CAS  Google Scholar 

  14. Mahmood A, Warsi MF, Ashiq MN, Ishaq M (2013) Substitution of La and Fe with Dy and Mn in multiferroic La1−xDyxFe1-yMnyO3 Nanocrystallites J Magn Magn Mater 327:64–70. https://doi.org/10.1016/j.jmmm.2012.09.033

    Article  CAS  Google Scholar 

  15. Ahmad I, Akhtar MJ, Hasan MM (2014) Impedance spectroscopic investigation of electro active regions, conduction mechanism and origin of colossal dielectric constant in Nd1−xSrxFeO3 (0.1 ≤ x ≤ 0.5). Mater Res Bull 60:474–484. https://doi.org/10.1016/j.materresbull.2014.08.046

    Article  CAS  Google Scholar 

  16. Xiaofeng W, Wei M, Kaiming S, Jifan H, Hongwei Q (2017) Nanocrystalline Gd1–xCaxFeO3 sensors for detection of methanol gas. J Rare Earths 35:690–697. https://doi.org/10.1016/S1002-0721(17)60965-7

    Article  Google Scholar 

  17. Benali A, Azizi S, Bejar M, Dhahri E, Graca MFP (2014) Structural, electrical and ethanol sensing properties of double-doping LaFeO3 perovskite oxides. Ceram Int 40:14367–14373. https://doi.org/10.1016/j.ceramint.2014.06.029

    Article  CAS  Google Scholar 

  18. Vassilis Stathopoulos N, Vassiliki Belessi C, Athanasios Ladavos K (2001) Samarium based high surface area perovskite type oxides SmFe1−xAlXO3 (x=0.00, 0.50, 0.95). React Kinet Catal Lett 72:49–55. https://doi.org/10.1023/A:1010576329475

    Article  Google Scholar 

  19. Francke L, Durand E, Demourgues A, Vimont A, Daturi M, Tressaud A (2003) Synthesis and characterization of Al3+, Cr3+, Fe3+ and Ga3+ hydroxyfluorides: correlations between structural features, thermal stability and acidic properties. J Mater Chem 13:2330–2340. https://hal.archives-ouvertes.fr/hal-00177553

    Article  CAS  Google Scholar 

  20. Maghsoudi I, Shokrollahi H, Hadianfard MJ, Amighian J (2013) Synthesis and characterization of NiAlxFe2-XO4 magnetic spinel ferrites produced by conventional method. Powder Technol 235:110–114. https://doi.org/10.1016/j.powtec.2012.10.002

    Article  CAS  Google Scholar 

  21. Adyanthaya S, Poddar P (2010) Effect of reduced particle size on the magnetic properties of chemically synthesized BiFeO3 nanocrystals J Phys Chem C 114:2108–2115. https://doi.org/10.1021/jp910745g

    Article  CAS  Google Scholar 

  22. Bartolome F, Bartolome J (2005) Inhibition of Nd magnetic order in NdFe1−xCoxO3 (x ≤ 0.5). Sol State Sci 7:700–709. https://doi.org/10.1016/j.solidstatesciences.2004.11.016

    Article  CAS  Google Scholar 

  23. Nforna EA, Tsobnang PK, Fomekong RL, Tedjieukeng HMK, Lambi JN, Ghogomu JN (2018) Effect of B-site Co substitution on the structure and magnetic properties of nanocrystalline neodymium orthoferrite synthesized by auto-combustion. R Soc Sci 7:83–96. https://doi.org/10.1098/rsos.201883

    Article  CAS  Google Scholar 

  24. Bartolome J, Palacios E, Kuzmin MD, Bartolome F, Sosnowska I, Przenios R (1997) Single-crystal neutron diffraction study of Nd magnetic ordering in NdFeO3 at low temperature. Phys Rev B: Condens Matter 55:11432–11441. https://doi.org/10.1103/PhysRevB.55.11432

    Article  CAS  Google Scholar 

  25. Vandana CS, Rudramadevi BH (2018) Effect of Cu2+ Substitution on the structural, magnetic and electrical properties of gadolinium orthoferrite. Mat Res Express 5:046101, https://orcid.org/0000-0002-7108-5887

    Article  Google Scholar 

  26. Xiong Q, Chen Z, Huang J, Zhang M, Song H, Hou X, Li X, Feng Z (2020) Preparation, structure and mechanical properties of Sialon ceramics by transition metal-catalyzed nitriding reaction. Rare Met 39:589–596. https://doi.org/10.1007/s12598-020-01385-6

    Article  CAS  Google Scholar 

  27. Shalimi T, Kumar J (2021) Investigations on the structural and magnetic properties of Nd1−xGdxFeO3. Bull Mater Sci 44:90–97. https://doi.org/10.1007/s12034-021-02399-1

    Article  CAS  Google Scholar 

  28. Stawinski W, Przeniosto R, Sosnowska I, Suard E (2005) Spin reorientation and structural changes in NdFeO3. J Phys: Condens Matter 17:4605–4614. https://doi.org/10.1088/0953-8984/17/29/002

    Article  CAS  Google Scholar 

  29. Yuan SJ, Ren W, Hong F, Wang YB, Zhang JC, Bellaiche L, Cao SX, Cao G (2013) Spin switching and magnetization reversal in single-crystal NdFeO3. Phys Rev B 87:184405–184406. https://doi.org/10.1103/PhysRevB.87.184405

    Article  CAS  Google Scholar 

  30. Weckhuysen BM, Schoonheydt RA (1999) Recent progress in diffuse reflectance spectroscopy of supported metal oxide catalysts. Catal Today 49:441–451. https://doi.org/10.1016/S0920-5861(98)00458-1

    Article  CAS  Google Scholar 

  31. Yang Y, Wang Y, Zheng C, Lin H, Xu R, Zhu H, Bao L, Xu X (2022) Lanthanum carbonate grafted ZSM-5 for superior phosphate uptake: Investigation of the growth and adsorption mechanism. Chem Eng J (Lausanne, Switz: 1996) 430:133166. https://doi.org/10.1016/j.cej.2021.133166

    Article  CAS  Google Scholar 

  32. Wang Y, Wu X, Liu J, Zhai Z, Yang Z, Xia J, Deng S, Qu X, Zang H, Wu D, Wang J, Fe C, Zhang Q (2022) Mo-modified band structure and enhanced photocatalytic properties of tin oxide quantum dots for visible-light driven degradation of antibiotic contaminants. J Environ Chem Eng 10:107091. https://doi.org/10.1016/j.jece.2021.107091

    Article  CAS  Google Scholar 

  33. Yang Y, Zhu H, Xu X, Bao L, Wang Y, Lin H, Zheng C (2021) Construction of a novel lanthanum carbonate-grafted ZSM-5 zeolite for effective highly selective phosphate removal from wastewater. Microporous Mesoporous Mater 324:111289. https://doi.org/10.1016/j.micromeso.2021.111289

    Article  CAS  Google Scholar 

  34. Kandasamy S, Ameen F, Amirul M, Sudhakar C, Selvankumar T (2022) Laccase production from Bacillus aestuarii KSK using Borassus flabellifer empty fruit bunch waste as substrate and assess their malachite green dye degradation. J Appl Microbiol. https://doi.org/10.1111/jam.15670

  35. Pavlov VV, Akbashev AR, Kalashnikova AM, Rusakov VA, Kaul AR, Bayer M, Pisarev RV (2012) Optical properties and electronic structure of multiferroic hexagonal orthoferrites RFeO3 (R = Ho,Er,Lu). J Appl Phys 111:056105–056109. https://doi.org/10.1063/1.3693588

    Article  CAS  Google Scholar 

  36. Tijare SN, Bakardjieva S, Subrt J, Joshi MV, Rayalu SS, Hishita S, Labhsetwar N (2014) Synthesis and visible light photocatalytic activity of nanocrystalline PrFeO3 perovskite for hydrogen generation in ethanol-water system. J Chem Sci 126:517–525. https://doi.org/10.1007/s12039-014-0596-x

    Article  CAS  Google Scholar 

  37. Zhao H, Xu S, Zhong J, Bao X (2004) Kinetic study on the photo-catalytic degradation of pyridine in TiO2 suspension systems. Catal Today 93:857–861. https://doi.org/10.1016/j.cattod.2004.06.086

    Article  CAS  Google Scholar 

  38. Yu C, Chen X, Li N, Zhang Y, Li S, Chen J, Yao L, Lin K, Lai Y, Deng X (2022) Ag3PO4-based photocatalysts and their application in organic-polluted wastewater treatment. Environ Sci Pollut Res 29:18423–18439. https://doi.org/10.1007/s11356-022-18591-7

    Article  CAS  Google Scholar 

  39. Yu F, Zhu Z, Li C, Li W, Liang R, Yu S, Xu Z, Song F, Ren Q, Zhang Z (2022) A redox-active perylene- anthraquinone donor-acceptor conjugated microporous polymer with an unusual electron delocalization channel for photocatalytic reduction of uranium (VI) in strongly acidic solution. Appl Catal B: Environ 314:121467. https://doi.org/10.1016/j.apcatb.2022.121467

    Article  CAS  Google Scholar 

  40. Kamal Warshi M, Mishra V, Sagdeo A, Mishra V, Kumar R, Sagdeo PR (2018) Structural, optical and electronic properties of RFeO3. Ceram Int 44:8344–8349. https://doi.org/10.1016/j.ceramint.2018.02.023

    Article  CAS  Google Scholar 

  41. Wu A, Shen H, Xu J, Jiang L, Luo L, Yuan SH, Cao SH, Zhang H (2011) Preparation and magnetic properties of RFeO3 nanocrystalline powders. J Sol-Gel Sci Technol 59:158–163. https://doi.org/10.1007/s10971-011-2474-z

    Article  CAS  Google Scholar 

  42. Robbins M, Wertheim GK, Menth A, Sherwood RC (1969) Preparation and properties of polycrytalline cerium orthoferrite (CeFeO3). J Phys Chem Soilds 30:1823–1825. https://doi.org/10.1016/0022-3697(69)90250-9

    Article  CAS  Google Scholar 

  43. Zhou ZH, Guo L, Yang H, Liu Q, Ye F (2014) Hydrothermal synthesis and magnetic properties of multiferroic rare-earth orthoferrites. J Alloy Comp 583:21–31. https://doi.org/10.1016/j.jallcom.2013.08.129

    Article  CAS  Google Scholar 

  44. Ameen F, Dawoud T, AlNadhari S, Ameen F, Dawoud T, AlNadhari S (2021) Ecofriendly and low-cost synthesis of ZnO nanoparticles from Acremonium potronii for the photocatalytic degradation of azo dyes. Environ Res 202:111700. https://doi.org/10.1016/j.envres.2021.111700

    Article  CAS  Google Scholar 

  45. Ameen F, Al-Maary KS, Almansob A, AlNadhari S (2022) Antioxidant, antibacterial and anticancer efficacy of Alternaria chlamydospora-mediated gold nanoparticles. Appl Nanosci 18:3. https://doi.org/10.1007/s13204-021-02047-4

    Article  CAS  Google Scholar 

  46. Ameen F (2022) Optimization of the synthesis of fungus-mediated bi-metallic Ag-Cu nanoparticles. Appl Sci 12:1384. https://doi.org/10.3390/app12031384

    Article  CAS  Google Scholar 

  47. Al-Enazi NM, Ameen F, Alsamhary K, Dawoud T, Al-Khattaf F, AlNadhari S (2021) Tin oxide nanoparticles (SnO2-NPs) synthesis using Galaxaura elongata and its anti-microbial and cytotoxicity study: a greenery approach. Appl Nanosci 1–9. https://doi.org/10.1007/s13204-021-01828-1

  48. Ameen F, Al-Homaidan AA, Al-Sabri A, Almansob A, AlNAdhari S (2021) Anti-oxidant, anti-fungal and cytotoxic effects of silver nanoparticles synthesized using marine fungus Cladosporium halotolerans. Appl Nanosci 8:1–9. https://doi.org/10.1007/s13204-021-01874-9

    Article  CAS  Google Scholar 

  49. Moghadam NCZ, Jasim SA, Ameen F, Alotaibi DH, Nobre MAL, Sellami H, Khatami M (2022) Nickel oxide nanoparticles synthesis using plant extract and evaluation of their antibacterial effects on Streptococcus mutans. Bioprocess Biosyst Eng. 45:1201–1210. https://doi.org/10.1007/s00449-022-02736-6. Epub 2022 Jun 15

  50. Akbashev AR, Semisalova AS, Perov NS, Kaul AR (2011) Weak ferromagnetism in hexagonal orthoferrites RFeO3 (R = Lu, Er-Tb). Appl Phys Lett 99:122502–122505. https://doi.org/10.1063/1.3643043

    Article  CAS  Google Scholar 

  51. Tien NA, Diem CH, Truc Linh NT, Mittova VO, Huong DT, Mittova IY (2018) Structural and magnetic properties of YFe1−xCoxO3 (0.1 ≤ x ≤ 0.5) perovskite nanomaterials synthesized by co-precipitation method. Nanosyst Phys Chem Math 9:424–429. https://doi.org/10.17586/2220-8054-2018-9-3-424-429

    Article  CAS  Google Scholar 

  52. Wang M, Deng L, Liu G, Wen L, Wang J, Huang K, Hang H, Pan Y (2019) Porous organic polymer-derived nanopalladium catalysts for chemoselective synthesis of antitumor benzofuro[2,3-b]pyrazine from 2-Bromophenol and isonitriles. Org lett 21:4929–4932. https://doi.org/10.1021/acs.orglett.9b01230

    Article  CAS  Google Scholar 

  53. Indhira D, Krishnamoorthy M, Ameen F, Bhat SA, Arumugam K (2022) Biomimetic facile synthesis of zinc oxide and copper oxide nanoparticles from Elaeagnus indica for enhanced photocatalytic activity. Environ Res 212:113323. https://doi.org/10.1016/j.envres.2022.113323

    Article  CAS  Google Scholar 

  54. Mohammed AE, Ameen F, Aabed K, Suliman RS, Alghamdi SS, Safhi FA (2022) In-silico predicting as a tool to develop plant-based biomedicines and nanoparticles: Lycium shawii metabolites. Biomed Pharmacother 150:113008. https://doi.org/10.1016/j.biopha.2022.113008

    Article  CAS  Google Scholar 

  55. Li Y, Bai Q, Guan Y, Zhang P, Shen R, Lu L, Liu H, Yuan X, Han W, Yao C (2022) In situ plasma cleaning of large-aperture optical components in ICF. Nucl Fusion 62:76023. https://doi.org/10.1088/1741-4326/ac555c

    Article  Google Scholar 

  56. Nakhaei M, Bahari A (2016) Synthesis and investigation of temperature effects on barium titanate (BaTiO3) nanostructural and electrical properties. J Mater Sci: Mater Electron 27:5899–5908. https://doi.org/10.1007/s10854-016-4508-3

    Article  CAS  Google Scholar 

  57. Nakhaei M, Khoshnoud DSanavi (2019) Influence of particle size and lattice distortion on magnetic and dielectric properties of NdFeO3 orthoferrite. Phys B Condens Matter 553:53–58. https://doi.org/10.1016/j.physb.2018.10.032

    Article  CAS  Google Scholar 

  58. Lassoued A, Lassoued MS, Dkhil B, Ammar S, Gadri A (2019) Substituted effect of Al3+ on structural, optical, magnetic and photocatalytic activity of Ni ferrites. J Magn Magn Mater 476:124–133. https://doi.org/10.1016/j.jmmm.2018.12.062

    Article  CAS  Google Scholar 

  59. Yue ZH, Zhou J, Li L, Wang X, Gui ZH (2001) Effect of copper on the electromagnetic properties of Mg-Zn-Cu ferrites prepared by sol-gel auto-combustion method. Mater Sci Eng B 86:64–69. https://doi.org/10.1016/S0921-5107(01)00660-2

    Article  Google Scholar 

  60. Zhao Y, Weidner DJ, Parise JB, Cox DE (1993) Thermal expansion and structural distortion of perovskite-data for NaMgF3 perovskite. Part I. Phys Earth Planet Inter 76:1–16. https://doi.org/10.1016/0031-9201(93)90051-A

    Article  CAS  Google Scholar 

  61. Keeffe MO, Hyde BG (1980) Plane nets in crystal chemistry. Philos Trans R Soc Lond Ser A 295:553. https://doi.org/10.1098/rsta.1980.0150

    Article  Google Scholar 

  62. Wells AF(1977) Three-Dimensional Nets and Polyhedra. Wiley, New York, 84, p 466–470.

  63. Na-Na L, Hui L, Rui-Lian T, Dan-Dan H, Yong-Sheng Z, Wei G, Pin-Wen Z, Xin W (2014) Doping effects on structural and magnetic evolutions of orthoferrite SmFe(1−x)AlxO3. Chin Phys B 23:046105–04111. https://doi.org/10.1088/1674-1056/23/4/046105

    Article  CAS  Google Scholar 

  64. Yuvaraj S, Layek S, Vidyavathy SM, Yuvaraj S, Meyrick D, Selvan RK (2015) Electrical and magnetic properties of spherical SmFeO3 synthesized by aspartic acid assisted combustion method. Mater Res Bull 72:77–82. https://doi.org/10.1016/j.materresbull.2015.07.013

    Article  CAS  Google Scholar 

  65. Xiang Chun L, Rongzi H, Changsheng T(2008) Tolerance factor and the stability discussion of ABO3-type ilmenite J Mater Sci: Mater Electron 20:323–327. https://doi.org/10.1007/s10854-008-9728-8

    Article  CAS  Google Scholar 

  66. Ahmed MA, Imam NG, Abdelmaksoud MK, Saeid YA (2015) Magnetic transitions and butterfly-shaped hysteresis of Sm-Fe-Al-based perovskite-type orthoferrite. J Rare Earth 33:965–972. https://doi.org/10.1016/S1002-0721(14)60513-5

    Article  CAS  Google Scholar 

  67. Bhuiyan MRA, Alam MM, Momin MA, Uddin MJ, Islam M (2012) Synthesis and characterization of barium titanate (BaTiO3) nanoparticle. Int J Mater Mech Eng 1:21–24

    Google Scholar 

  68. Almansob A, Bahkali AH, Albarrag A, Alshomrani M, Binjomah A (2022) Effective treatment of resistant opportunistic fungi associated with immuno-compromised individuals using silver biosynthesized nanoparticles. Appl Nanosci 1–12. https://doi.org/10.1007/s13204-022-02539-x

  69. Mote VD, Purushotham Y, Dole BN (2012) Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J Theor Appl Phys 6:7235–7236. https://doi.org/10.1186/2251-7235-6-6

    Article  Google Scholar 

  70. Gowri G, Saravanan R, Sasikumar S, Nandhakumar M, Ragasudha R (2019) Interatomic chemical bonding and charge correlation of optical, magnetic and dielectric properties of La1−xSrxFeO3 multiferroics synthesized by solid- state reaction method. J Mater Sci Mater Electron 30:4409–4426. https://doi.org/10.1007/s10854-019-00730-5

    Article  CAS  Google Scholar 

  71. Rahimkhani M, Sanavi Khoshnoud D, Ehsani MH (2018) Origin of enhanced multiferroic properties in Bi0.85-xLa0.15HoxFeO3 nanopowders. J Magn Magn Mater 449:538–544. https://doi.org/10.1016/j.jmmm.2017.10.014

    Article  CAS  Google Scholar 

  72. Maity R, Pradhan Sakhya A, Dutta A, Sinha TP (2018) Investigation of concentration dependent electrical and photocatalytic properties of Mn doped SmFeO3. Mater Chem Phys 223:78–87. https://doi.org/10.1016/j.matchemphys.2018.10.038

    Article  CAS  Google Scholar 

  73. Chanda S, Saha S, Dutta A, Sinha TP (2013) Synthesis, Raman spectroscopy and dielectric properties of nanoceramic NdFeO3. Mater Res Bull 48:1688–1693. https://doi.org/10.1016/j.molstruc.2017.03.016

    Article  CAS  Google Scholar 

  74. Nakhaei M, Sanavi Khoshnoud D (2021) Study on structural, magnetic and electrical properties of ReFeO3 (Re = La, Pr, Nd, Sm & Gd) orthoferrites. Phys B 612:412899–412914. https://doi.org/10.1016/j.physb.2021.412899

    Article  CAS  Google Scholar 

  75. Nakhaei M, Sanavi Khoshnoud D (2021) Structural, magnetic and electrical properties of RFeO3 (R = Dy, Ho, Yb & Lu) compounds. J Mater Sci Mater Electron 32:14286–14300. https://doi.org/10.1007/s10854-021-05992-6

    Article  CAS  Google Scholar 

  76. Zhou JS, Alonso JA, Pomjakushin V, Goodenough JB, Ren Y, Yan JQ, Cheng JG (2010) Intrinsic structural distortion and superexchange interaction in the orthorhombic rare-earth perovskites RCrO3. Phys Rev B 81:214115–214120. https://doi.org/10.1103/PhysRevB.81.214115

    Article  CAS  Google Scholar 

  77. Aparnadevi N, SaravanaKumar K, Manikandan M, Paul Joseph D, Venkateswaran C (2014) Room temperature dual ferroic behaviour of ball mill synthesized NdFeO3 orthoferrite. J Appl Phys 120:034101. https://doi.org/10.1063/1.4954842

    Article  CAS  Google Scholar 

  78. Winkler E, Zyster RD, Mansilla MV, Fiorant D (2005) Surface anisotropy effects in NiO nanoparticles. Phys Rev B 72:132409–132414. https://doi.org/10.1103/PhysRevB.72.132409

    Article  CAS  Google Scholar 

  79. Kodama RH, Makhlouf SA, Berkowitz AE (1997) Finite size effects in antiferromagnetic NiO nanoparticles. Phys Rev Lett 79:1393–1396. https://doi.org/10.1103/PhysRevLett.79.1393

    Article  CAS  Google Scholar 

  80. Zhang G, Zhang Z, Sun M, Yu Y, Wang J, Cai S (2022) The influence of the temperature on the dynamic behaviors of magnetorheological gel. Adv Eng Mater 2101680. https://doi.org/10.1002/adem.202101680.

  81. Duran A, Verdin E, Conde A, Escamilla R (2018) Effect of Al-doped YCrO3 on structural, electronic and magnetic properties. J Magn Magn Mater 453:36–43. https://doi.org/10.1016/j.jmmm.2017.12.106

    Article  CAS  Google Scholar 

  82. Zhang G, Chen J, Zhang Z, Sun M, Yu Y, Wang J, Cai S (2022) Analysis of magnetorheological clutch with double cup-shaped gap excited by Halbach array based on finite element method and experiment. Smart Mater Struct 31:075008. https://doi.org/10.1088/1361-665X/ac701a

    Article  Google Scholar 

  83. Babu PR, Bhaumik I, Ganesamoorthy S, Kalainathan S, Bhatt R, Karnal A, Gupta PK (2015) Investigation of magnetic property of GdFeO3 single crystal grown in air by optical floating zone technique. J Alloy Compd 631:232–236. https://doi.org/10.1016/j.jallcom.2015.01.112

    Article  CAS  Google Scholar 

  84. Janbutrach Y, Hunpratub S, Swatsitang E (2014) Ferromagnetism and optical properties of La1− x AlxFeO3 nanopowders. Nanoscale Res Lett 9:498–505. https://doi.org/10.1186/1556-276X-9-498

    Article  CAS  Google Scholar 

  85. Muneeswaran M, Jang JW, Jeong JH, Akbari Fakhrabadi A, Giridharan NV (2020) Effect of dopant-induced defects on structural, electrical, and enhanced ferromagnetism and magnetoelectric properties of Dy and Sr co-doped BiFeO3. J Mater Sci: Mater Electron 31:20191–20209. https://doi.org/10.1007/s10854-019-01048-y

  86. Jaiswal A, Das R, Adyanthaya S, Poddar P (2011) Surface effects on morin transition, exchange bias, and enchanced spin reorientation in chemically synthesized DyFeO3 nanoparticles. J Phys Chem C 115:2954–2960. https://doi.org/10.1021/jp109313w

    Article  CAS  Google Scholar 

  87. Kotnana G, Reddy VR, Jammalamadaka SN (2017) Magnetic and hyperfine interactions in HoFe1- xCrxO3 (0 ó x ó 1) Compounds. J Magn Magn Mater 429:353–358. https://doi.org/10.1016/j.jmmm.2017.01.033

    Article  CAS  Google Scholar 

  88. Slawinski W, Przenioslo R, Sosnowska I, Brunelli M, Bieringer M (2007) Anomalous thermal expansion in polycrystalline NdFeO3 studied by SR and X-ray diffraction. Nuc Instrum Methods Phys Res Sect B 254:149–152. https://doi.org/10.1016/j.nimb.2006.10.079

    Article  CAS  Google Scholar 

  89. Ramesh J, Raju N, Reddy SSK, Reddy MS, Reddy ChG, Reddy PY, Rama Reddy K, Reddy VR (2017) 57Fe Mossbauer study of spin reorientation transition in polycrystalline NdFeO3. J Alloy Comp 711:300–304. https://doi.org/10.1016/j.jallcom.2017.03.353

    Article  CAS  Google Scholar 

  90. Mir SA, Ikram M, Asokan K (2015) Investigating spin reversal and other anomalies in magnetic, transport and specific heat measurements of NdFeO3 and NdFe0.5Ni0.5O3 ortho-perovskites. RSC Adv 5:85082–85094. https://doi.org/10.1039/C5RA17045A

    Article  CAS  Google Scholar 

  91. Hunpratub S, Karaphun A, Phokha S, Swatsitang E (2016) Optical and magnetic properties of La1−xGaxFeO3 nanoparticles synthesized by polymerization complex method. Appl Surf Sci 380:52–59. https://doi.org/10.1016/j.apsusc.2016.02.083

    Article  CAS  Google Scholar 

  92. Shikha P, Kang TS, Randhawa BS (2015) Effect of different synthetic routes on the structural, morphological and magnetic properties of Ce doped LaFeO3 nanoparticles. J Alloy Compd 625:336–345. https://doi.org/10.1016/j.jallcom.2014.11.074

    Article  CAS  Google Scholar 

  93. Tirupathi P, Justin P, Prabahar K, Poster M (2018) Broad temperature dependent magnetic and dielectric spectroscopy study of Dy(Fe0.5Cr0.5)O3 multiferroic ceramics. J Alloy Comp 731:411–417. https://doi.org/10.1016/j.jallcom.2017.10.069

    Article  CAS  Google Scholar 

  94. Nakhaei M, Bremholm M, Sanavi Khoshnoud D (2021) Structural and magnetic properties of RMO3 (R = Pr, Nd & M = Fe, Co) perovskites. J Supercond Nov Magn 34:3255–3266. https://doi.org/10.1007/s10948-021-05992-x

    Article  CAS  Google Scholar 

  95. Muneeswaran M, Jang JW, Jeong JH, Akbari-Fakhrabadi A, Giridharan NV (2019) Effect of dopant-induced defects on structural, electrical, and enhanced ferromagnetism and magnetoelectric properties of Dy and Sr co-doped BiFeO3. J Mater Sci Mater Electron 30:7359–7366. https://doi.org/10.1007/s10854-019-01048-y

    Article  CAS  Google Scholar 

  96. Lassoued A, Saber Lassoued M, Dkhil B, Ammar S, Gadri A (2018) Substituted effect of Al3+ on structural, optical, magnetic and photocatalytic activity of Ni ferrites. J Magn Magn Mater 476:124–133. https://doi.org/10.1016/j.jmmm.2018.12.062

    Article  CAS  Google Scholar 

  97. Lopez R, Gomez R (2012) Band-gap energy estimation from diffuse reflectance measurements on sol-gel and commercial TiO2. J Sol-Gel Sci Technol 61:1–7. https://doi.org/10.1007/s10971-011-2582-9

    Article  CAS  Google Scholar 

  98. Dhanalakshmi R, Muneeswaran M, Shalini K, Giridharan N (2016) Enhanced photocatalytic activity of La-substituted BiFeO3 nanostructures on the degradation of phenol red. Mater Lett 165:205–209. https://doi.org/10.1016/j.matlet.2015.11.106

    Article  CAS  Google Scholar 

  99. Megarajan S, Ameen F, Singaravelu D, Islam MA, Veerappan A (2022) Synthesis of N-myristoyltaurine stabilized gold and silver nanoparticles: Assessment of their catalytic activity, antimicrobial effectiveness and toxicity in zebrafish. Environ Res 212:113159. https://doi.org/10.1016/j.envres.2022.113159

    Article  CAS  Google Scholar 

  100. Tang P, Fu M, Chen H, Cao F (2011) Synthesis of nanocrystalline LaFeO3 by precipitation and its Visible-Light photocatalytic activity. Mater Sci Forum 694, 150–154. https://doi.org/10.4028/www.scientific.net/MSF.694.150

  101. Ismael M, Wark M (2019) Perovskite-type LaFeO3: photoelectrochemical properties and photocatalytic degradation of organic pollutants under visible light irradiation. Catalysts 9:342–357. https://doi.org/10.3390/catal9040342

    Article  CAS  Google Scholar 

  102. Kajbafvala A, Ghorbani H, Paravar A, Samberg JP, Kajbafvala E, Sadrnezhaad SK (2012) Effects of morphology on photocatalytic performance of Zinc oxide nanostructures synthesized by rapid microwave irradiation methods. Superlattices Microstruct 51:512–522. https://doi.org/10.1016/j.spmi.2012.01.015

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

MN, Conceptualization, Methodology, Software, Writing—Original draft preparation, DSK, Data curation, Investigation, Validation, Editing. MB, Data curation, Investigation, Validation. MALN conceptual, reviewing and editing. HAK, Investigation, Writing-reviewing, Editing.

Corresponding author

Correspondence to Mehrnoush Nakhaei.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakhaei, M., Khoshnoud, D.S., Bremholm, M. et al. Effects of Al doping on physical properties and photocatalytic activity of neodymium orthoferrite. J Sol-Gel Sci Technol 105, 246–265 (2023). https://doi.org/10.1007/s10971-022-05956-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-022-05956-0

Keywords

Navigation