Skip to main content
Log in

Characterization and corrosion inhibition studies of protective sol–gel films modified with tannin extracts on low carbon steel

  • Original Paper: Industrial and technological applications of sol-gel and hybrid materials
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In the present work, tannins extracted from tamarind shells using water (TWE) and ethyl acetate (TEAE) were introduced into fabricated sol–gel containing 3-glycidoxypropyltrimethoxysilane (GPTMS) and tetraethoxysilane (TEOS) which were subsequently assembled over mild steel surface. The corrosion inhibitive behavior of the prepared layers in 0.5 M HCl was experimented by exploiting potentiodynamic polarization and electrochemical impedance spectroscopy analyses. Optimized GPTMS-TEOS alkoxysilane films’ functional groups were corroborated exploiting Fourier transform infrared spectroscopy. Surface morphology, elemental composition and wetting property of the optimized coatings were explored via scanning electron microscopy, energy dispersive X-ray spectroscopy and wetting angle studies, respectively. The result of the electrochemical studies revealed that the maximum inhibition efficiency achieved at 1000 ppm was up to 90%. With regards to FTIR spectra, the infrared bands at −1046 and −935 cm−1 confirmed the formation of (Si–O–Si) and (Fe–O–Si) covalent bonds. The presence of this peak indicates the formation of networks between the mild steel substrate and silicate. The study has revealed that tannins doped GPTMS-TEOS silanol matrix enhanced the protection ability by promoting crosslinking reactions of the coatings compared to undoped coatings to a significant extent.

Graphical abstract

Highlights

  • GPTMS-TEOS coatings were applied on mild steel by self-assembled monolayer method.

  • icorr values of developed coatings were significantly lower than uncoated substrate.

  • Tannin extracts doped (GPTMS-TEOS)/Fe showed higher charge transfer resistance.

  • Developed coatings showed improved hydrophobic characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kunst SR, Cardoso HRP, Oliveira CT, Santana JA, Sarmento VHV, Muller IL, Malfatti CF (2014) Corrosion resistance of siloxane-poly (methyl methacrylate) hybrid films modified with acetic acid on tin plate substrates: Influence of tetraethoxysilane addition. Appl Surf Sci 298:1–11. https://doi.org/10.1016/j.apsusc.2013.09.182

    Article  CAS  Google Scholar 

  2. Lakshmi RV, Yoganandan G, Mohan AVN, Basu BJ (2014) Effect of surface pre-treatment by silanization on corrosion protection of AA2024-T3 alloy by sol-gel nanocomposite coatings. Surf Coat Technol 240:353–360. https://doi.org/10.1016/j.surfcoat.2013.12.051

    Article  CAS  Google Scholar 

  3. Habazaki H, Kimura T, Aoki Y, Tsuji E, Yano T (2014) Highly enhanced corrosion resistance of stainless steel by sol-gel layer-by-layer aluminosilicate thin coatings. J Electrochem Soc 161(1):C57–C61. https://doi.org/10.1149/2.060401jes

    Article  CAS  Google Scholar 

  4. Rodič P, Milošev I (2014) Corrosion properties of UV cured hybrid sol-gel coatings on AA7075-T6 determined under simulated aircraft conditions. J Electrochem Soc 161(9):C412–C420. https://doi.org/10.1149/2.1091409jes

    Article  CAS  Google Scholar 

  5. Rodič P, Milošev I (2015) Electrochemical and salt spray testing of hybrid coatings based on Si and Zr deposited on aluminum and its alloys. J Electrochem Soc 162(10):C592–C600. https://doi.org/10.1149/2.0801510jes

    Article  CAS  Google Scholar 

  6. Zheludkevich ML, Salvado IM, Ferreira MGS (2005) Sol-gel coatings for corrosion protection of metals. J Mater Chem 15(48):5099–5111. https://doi.org/10.1039/B419153F

    Article  CAS  Google Scholar 

  7. Wankhede RG, Morey S, Khanna AS, Birbilis N (2013) Development of water-repellent organic-inorganic hybrid sol-gel coatings on aluminum using short chain perfluoro polymer emulsion. Appl Surf Sci 283:1051–1059. https://doi.org/10.1016/j.apsusc.2013.07.066

    Article  CAS  Google Scholar 

  8. Adelkhani H, Nasoodi S, Jafari AH (2014) Corrosion protection properties of silica coatings formed by sol-gel method on Al: The effects of acidity, withdrawal speed, and annealing temperature. Prog Org Coat 77(1):142–145. https://doi.org/10.1016/j.porgcoat.2013.08.011

    Article  CAS  Google Scholar 

  9. May M, Wang HM, Akid R (2010) Effects of the addition of inorganic nanoparticles on the adhesive strength of a hybrid sol-gel epoxy system. Int J Adhes Adhes 30(6):505–512. https://doi.org/10.1016/j.ijadhadh.2010.05.002

    Article  CAS  Google Scholar 

  10. Raps D, Hack T, Wehr J, Zheludkevich ML, Bastos AC, Ferreira MGS, Nuyken O (2009) Electrochemical study of inhibitor-containing organic-inorganic hybrid coatings on AA2024. Corros Sci 51(5):1012–1021. https://doi.org/10.1016/j.corsci.2009.02.018

    Article  CAS  Google Scholar 

  11. Yu M, Liu Y, Liu J, Li S, Xue B, Zhang Y, Yin X (2015) Effects of cerium salts on corrosion behaviors of Si-Zr hybrid sol-gel coatings. Chin J Aeronaut 28(2):600–608. https://doi.org/10.1016/j.cja.2015.01.011

    Article  Google Scholar 

  12. Rodič P, Iskra J, Milošev I (2014) A hybrid organic-inorganic sol-gel coating for protecting aluminium alloy 7075-T6 against corrosion in Harrison’s solution. J Sol-Gel Sci Technol 70(1):90–103. https://doi.org/10.1007/s10971-014-3278-8

    Article  CAS  Google Scholar 

  13. Creus J, Mazille H, Idrissi H (2000) Porosity evaluation of protective coatings onto steel, through electrochemical techniques. Surf Coat Technol 130(2):224–232. https://doi.org/10.1016/S0257-8972(99)00659-3

    Article  CAS  Google Scholar 

  14. Yasakau KA, Zheludkevich ML, Karavai OV, Ferreira MGS (2008) Influence of inhibitor addition on the corrosion protection performance of sol-gel coatings on AA2024. Prog Org Coat 63(3):352–361. https://doi.org/10.1016/j.porgcoat.2007.12.002

    Article  CAS  Google Scholar 

  15. Vignesh RB, Sethuraman MG (2014) Corrosion protection behaviour of sol-gel derived N,N- dimethylthiourea doped 3-glycidoxypropyltrimethoxysilane on aluminium. Prog Org Coat 77(1):136–141. https://doi.org/10.1016/j.porgcoat.2013.08.012

    Article  CAS  Google Scholar 

  16. Milošev I, Kapun B, Rodič P, Iskra J (2015) Hybrid sol-gel coating agents based on zirconium(IV) propoxide and epoxysilane. J Sol Gel Sci Technol 74(2):447–459. https://doi.org/10.1007/s10971-015-3620-9

    Article  CAS  Google Scholar 

  17. Karthik N, Asha S, Sethuraman MG (2016) Influence of pH-sensitive 4-aminothiophenol on the copper corrosion inhibition of hybrid sol-gel monolayers. J Sol Gel Sci Technol 78(2):248–257. https://doi.org/10.1007/s10971-015-3944-5

    Article  CAS  Google Scholar 

  18. Kang D, Kwon JY, Cho H, Sim J-H, Hwang HS, Kim CS, Kim YJ, Ruoff RS, Shin HS (2012) Oxidation resistance of iron and copper foils coated with reduced graphene oxide multilayers. ACS Nano 6(9):7763–7769. https://doi.org/10.1021/nn3017316

    Article  CAS  Google Scholar 

  19. Rozuli NA, Hamidon TS, Hussin MH (2019) Evaluation of Piper sarmentosum extract’s corrosion inhibitive effects and adsorption characteristics for the corrosion protection of mild steel in 0.5 M HCl. Mater Res Express 6(10):106524. https://doi.org/10.1088/2053-1591/ab3677

    Article  CAS  Google Scholar 

  20. Raj CR, Kitamura F, Ohsaka T (2001) Electrochemical and in situ FTIR spectroscopic investigation on the electrochemical transformation of 4-aminothiophenol on a gold electrode in neutral solution. Langmuir 17(23):7378–7386. https://doi.org/10.1021/la010746q

    Article  CAS  Google Scholar 

  21. Balaji J, Oh TH, Sethuraman MG (2021) Effects of pH on inhibitor-doped hybrid protective sol-gel coatings on the copper electrode surface. J Taiwan Inst Chem Eng 119:259–268. https://doi.org/10.1016/j.jtice.2021.02.006

    Article  CAS  Google Scholar 

  22. Yu M, Xue B, Liu J, Li S, Zhang Y (2015) Electrophoretic deposition of hybrid coatings on aluminum alloy by combining 3-aminopropyltrimethoxysilan to silicon-zirconium sol solutions for corrosion protection. Thin Solid Films 590:33–39. https://doi.org/10.1016/j.tsf.2015.07.055

    Article  CAS  Google Scholar 

  23. Akid R, Gobara M, Wang H (2011) Corrosion protection performance of novel hybrid polyaniline/sol-gel coatings on an aluminium 2024 alloy in neutral, alkaline and acidic solutions. Electrochim Acta 56(5):2483–2492. https://doi.org/10.1016/j.electacta.2010.12.032

    Article  CAS  Google Scholar 

  24. Croes KJ, Vreugdenhil AJ, Yan M, Singleton TA, Boraas S, Gelling VJ (2011) An electrochemical study of corrosion protection by in situ oxidative polymerization in phenylenediamine crosslinked sol-gel hybrid coatings. Electrochim Acta 56(23):7796–7804. https://doi.org/10.1016/j.electacta.2011.06.046

    Article  CAS  Google Scholar 

  25. Poznyak SK, Zheludkevich ML, Raps D, Gammel F, Yasakau KA, Ferreira MGS (2008) Preparation and corrosion protective properties of nanostructured titania-containing hybrid sol-gel coatings on AA2024. Prog Org Coat 62(2):226–235. https://doi.org/10.1016/j.porgcoat.2007.12.004

    Article  CAS  Google Scholar 

  26. Tan ALK, Soutar AM (2008) Hybrid sol-gel coatings for corrosion protection of copper. Thin Solid Films 516(16):5706–5709. https://doi.org/10.1016/j.tsf.2007.07.066

    Article  CAS  Google Scholar 

  27. Akbarzadeh S, Sopchenski Santos L, Vitry V, Paint Y, Olivier M-G (2022) Improvement of the corrosion performance of AA2024 alloy by a duplex PEO/clay modified sol-gel nanocomposite coating. Surfac Coat Technol 434:128168. https://doi.org/10.1016/j.surfcoat.2022.128168

    Article  CAS  Google Scholar 

  28. del Olmo R, Tiringer U, Milošev I, Visser P, Arrabal R, Matykina E, Mol JMC (2021) Hybrid sol-gel coatings applied on anodized AA2024-T3 for active corrosion protection. Surf Coat Technol 419:127251. https://doi.org/10.1016/j.surfcoat.2021.127251

    Article  CAS  Google Scholar 

  29. Suárez-Vega A, Agustín-Sáenz C, O’Dell LA, Brusciotti F, Somers A, Forsyth M (2021) Properties of hybrid sol-gel coatings with the incorporation of lanthanum 4-hydroxy cinnamate as corrosion inhibitor on carbon steel with different surface finishes. Appl Surf Sci 561:149881. https://doi.org/10.1016/j.apsusc.2021.149881

    Article  CAS  Google Scholar 

  30. Hamidon TS, Qiang TZ, Hussin MH (2019) Anticorrosive performance of AA6061 aluminium alloy treated with sol-gel coatings doped with mangrove bark tannins in 3.5 wt% NaCl. Mater Res Express 6(9):096417. https://doi.org/10.1088/2053-1591/ab2ef6

    Article  CAS  Google Scholar 

  31. Hamidon TS, Hussin MH (2020) Susceptibility of hybrid sol-gel (TEOS-APTES) doped with caffeine as potent corrosion protective coatings for mild steel in 3.5 wt.% NaCl. Prog Org Coat 140:105478. https://doi.org/10.1016/j.porgcoat.2019.105478

    Article  CAS  Google Scholar 

  32. Rahim AA, Kassim MJ, Rocca E, Steinmetz J (2011) Mangrove (Rhizophora apiculata) tannins: an eco-friendly rust converter. Corros Eng Sci Techn 46(4):425–431. https://doi.org/10.1179/174327809X457003

    Article  CAS  Google Scholar 

  33. Wu Y, Du Z, Wang H, Cheng X (2017) Synthesis of aqueous highly branched silica sol as underlying crosslinker for corrosion protection. Prog Org Coat 111:381–388. https://doi.org/10.1016/j.porgcoat.2017.06.023

    Article  CAS  Google Scholar 

  34. Bayram S, Hussin MH, Hamidon TS, OzdemİR M (2022) Anticorrosive performance of bacterial eumelanin polymer as a novel corrosion inhibitor doped into hybrid sol-gel matrix. Eur J Sci Technol 35:9–16. https://doi.org/10.31590/ejosat.1047553

    Article  Google Scholar 

  35. Hamidon TS, Ishak NA, Hussin MH (2021) Enhanced corrosion inhibition of low carbon steel in aqueous sodium chloride employing sol-gel-based hybrid silanol coatings. J Sol Gel Sci Technol 97(3):556–571. https://doi.org/10.1007/s10971-021-05474-5

    Article  CAS  Google Scholar 

  36. Abdulmajid A, Hamidon TS, Hussin MH (2022) Tamarind shell tannin-doped hybrid sol-gel coatings on mild steel in acidic medium toward improved corrosion protection. J Coat Technol Res 19(2):527–542. https://doi.org/10.1007/s11998-021-00539-0

    Article  CAS  Google Scholar 

  37. Mourya P, Banerjee S, Singh MM (2014) Corrosion inhibition of mild steel in acidic solution by Tagetes erecta (Marigold flower) extract as a green inhibitor. Corros Sci 85:352–363. https://doi.org/10.1016/j.corsci.2014.04.036

    Article  CAS  Google Scholar 

  38. López DA, Simison SN, de Sánchez SR (2003) The influence of steel microstructure on CO2 corrosion. EIS studies on the inhibition efficiency of benzimidazole. Electrochim Acta 48(7):845–854. https://doi.org/10.1016/S0013-4686(02)00776-4

    Article  Google Scholar 

  39. Lorenz WJ, Mansfeld F (1981) Determination of corrosion rates by electrochemical DC and AC methods. Corros Sci 21(9):647–672. https://doi.org/10.1016/0010-938X(81)90015-9

    Article  CAS  Google Scholar 

  40. Kamal C, Sethuraman MG (2012) Spirulina platensis -A novel green inhibitor for acid corrosion of mild steel. Arab J Chem 5(2):155–161. https://doi.org/10.1016/j.arabjc.2010.08.006

    Article  CAS  Google Scholar 

  41. Phanasgaonkar A, Raja VS (2009) Influence of curing temperature, silica nanoparticles- and cerium on surface morphology and corrosion behaviour of hybrid silane coatings on mild steel. Surf Coat Technol 203(16):2260–2271. https://doi.org/10.1016/j.surfcoat.2009.02.020

    Article  CAS  Google Scholar 

  42. Liu M, Liu Y, Zeng Z, Peng T (2006) Preparation and characteristics of high pH-resistant sol- gel alumina-based hybrid organic-inorganic coating for solid-phase microextraction of polar compounds. J Chromatogr A 1108(2):149–157. https://doi.org/10.1016/j.chroma.2006.01.041

    Article  CAS  Google Scholar 

  43. Aparicio M, Jitianu A, Rodriguez G, Degnah A, Al-Marzoki K, Mosa J, Klein LC (2016) Corrosion protection of AISI 304 stainless steel with melting gel coatings. Electrochim Acta 202:325–332. https://doi.org/10.1016/j.electacta.2015.12.142

    Article  CAS  Google Scholar 

  44. Gnedenkov SV, Sinebryukhov SL, Egorkin VS, Mashtalyar DV, Emel’yanenko AM, Alpysbaeva DA, Boinovich LB (2012) Features of the occurrence of electrochemical processes in contact of sodium chloride solutions with the surface of superhydrophobic coatings on titanium. Russ J Electrochem 48(3):336–345. https://doi.org/10.1134/S1023193512020048

    Article  CAS  Google Scholar 

  45. Wang P, Zhang D, Qiu R, Wan Y, Wu J (2014) Green approach to fabrication of a super- hydrophobic film on copper and the consequent corrosion resistance. Corros Sci 80:366–373. https://doi.org/10.1016/j.corsci.2013.11.055

    Article  CAS  Google Scholar 

  46. Abdulmajid A, Hamidon TS, Abdul Rahim A, Hussin MH (2019) Physicochemical studies of tamarind shell tannins as a potential green rust converter. BioResources 14(3):6863–6882. https://doi.org/10.15376/biores.14.3.6863-6882

    Article  CAS  Google Scholar 

  47. Yahya S, Shah AM, Rahim AA, Abd Aziz NH, Roslan R (2008) Phase transformation of rust in the presence of various tannins. J Phys Sci 19(1):31–41

    CAS  Google Scholar 

  48. Nasr-Esfahani M, Pourriahi M, Ashrafi A, Motalebi A (2014) Corrosion performance of rosemary-extract-doped TEOS:TMSM sol-gel coatings on 304L stainless steel. Surf Engin Appl Electrochem 50(4):337–345. https://doi.org/10.3103/S1068375514040097

    Article  Google Scholar 

  49. Martinez S, Štagljar I (2003) Correlation between the molecular structure and the corrosion inhibition efficiency of chestnut tannin in acidic solutions. J Mol Struct Theochem 640(1):167–174. https://doi.org/10.1016/j.theochem.2003.08.126

    Article  CAS  Google Scholar 

  50. Zhao B, Han W, Zhang W, Shi B (2018) Corrosion inhibition performance of tannins for mild steel in hydrochloric acid solution. Res Chem Intermed 44:407–423. https://doi.org/10.1007/s11164-017-3111-4

    Article  CAS  Google Scholar 

  51. Xu W, Han EH, Wang Z (2019) Effect of tannic acid on corrosion behavior of carbon steel in NaCl solution. J Mater Sci Technol 35(1):64–75. https://doi.org/10.1016/j.jmst.2018.09.001

    Article  CAS  Google Scholar 

  52. Rahim AA, Rocca E, Steinmetz J, Kassim MJ, Adnan R, Ibrahim MS (2007) Mangrove tannins and their flavanoid monomers as alternative steel corrosion inhibitors in acidic medium. Corros Sci 49(2):402–417. https://doi.org/10.1016/j.corsci.2006.04.013

    Article  CAS  Google Scholar 

  53. Ishak NA, Hamidon TS, Zi-Hui T, Hussin MH (2020) Extracts of curcumin-incorporated hybrid sol-gel coatings for the corrosion mitigation of mild steel in 0.5 M HCl. J Coat Technol Res 17(6):1515–1535. https://doi.org/10.1007/s11998-020-00364-x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The funding for the present study was offered by Universiti Sains Malaysia through USM External Grant-304/PKIMIA/6501087/U162.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hazwan Hussin.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdulmajid, A., Hamidon, T.S. & Hussin, M.H. Characterization and corrosion inhibition studies of protective sol–gel films modified with tannin extracts on low carbon steel. J Sol-Gel Sci Technol 104, 287–299 (2022). https://doi.org/10.1007/s10971-022-05941-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-022-05941-7

Keywords

Navigation