Skip to main content
Log in

The sol–gel process applied in the stone conservation

  • Original Paper: Functional coatings, thin films and membranes (including deposition techniques)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

This review presents an overview of sol–gel technology in the field of stone conservation, discussing the underlying physics and chemistry of sol–gel and providing an overview of the use of sol–gel processing in stone conservation. This review also discusses the relationship between the sol–gel process, its structure, the mechanism in conservation as parameters influencing silica polymerization within the stone and on specific synthesis parameters in silane chemistry and mechanical behavior. In recent years, research on sol–gel science has increased due to the promising results of this technique, especially in the field of conservation of old buildings that require the preservation of the original stone with which they were built. In general, it is shown that a change in sol–gel parameters has a significant impact on stone conservation. This review indicates how sol–gel technology can be exploited to investigate and improve stone conservation.

Graphical abstract

Highlights

  • TEOS and different additives are reviewed as stone treatment conservation.

  • Mechanical strength of stone changes according to the consolidant treatment.

  • TEOS/PDMS improve the stone physical and chemical properties.

  • The penetration of consolidant varies according to its concentration and type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Scheme 3

Similar content being viewed by others

References

  1. Rafiee Fanood M, Mehdizadeh Saradj F (2013) Learning from the past and planning for the future: Conditions and proposals for stone conservation of the mausoleum of cyrus the great in the world heritage site of pasargadae. Int J Arch Herit 7:434–460

    Article  Google Scholar 

  2. Patil S, Kasthurba A (2021) Weathering of stone monuments: damage assessment of basalt and laterite. Mater Today: Proc 43:1647–1658

    CAS  Google Scholar 

  3. Gulotta D, Toniolo L (2022) Preliminary investigations, condition sssessment, and mapping of the deterioration patterns, In Conserving Stone Heritage, Gherardi F, Maravelaki P (eds) Springer Nature, Switzerland, p 1–36

  4. Godts S, Hayen R, De Clercq H (2017) Investigating salt decay of stone materials related to the environment, a case study in the St. James church in Liège, Belgium. Stud Conserv 62:329–342

    Article  CAS  Google Scholar 

  5. Richards J, Guo Q, Viles H, Wang Y, Zhang B, Zhang H (2022) Moisture content and material density affects severity of frost damage in earthen heritage. Sci Total Environ 819:153047

    Article  CAS  Google Scholar 

  6. Germinario L, Oguchi C (2021) Underground salt weathering of heritage stone: lithological and environmental constraints on the formation of sulfate efflorescences and crusts. J Cult Herit 49:85–93

    Article  Google Scholar 

  7. Borgia G, Camaiti M, Cerri F, Fantazzini P, Piacenti F (2003) Hydrophobic treatments for stone conservation influence of the application method on penetration, distribution and efficiency. Stud Conserv 48:217–226

    Article  CAS  Google Scholar 

  8. Delgado Rodrígues J (2022) Stone consolidation. Between science and practice. In Conserving Stone Heritage, Gherardi F, Maravelaki P (eds) Springer, Switzerland, p 101–135

  9. Warke P, Curran J, Turkington A, Smith B (2003) Condition assessment for building stone conservation:a staging system approach. Build Environ 38:1113–1123

    Article  Google Scholar 

  10. Snethlage R, Sterflinger K (2011) Stone Conservation, In Stone in Architecture. Properties, Durability, Siegesmund S, Snethlage R (eds) Springer, Berlin, p 411–543

  11. Girginova P, Galacho C, Veiga R, Santos Silva A, Candeias A (2020) Study of mechanical properties of alkaline earth hydroxide nanoconsolidants for lime mortars. Constr Build Mater 236:117520

    Article  CAS  Google Scholar 

  12. Brajer I, Kalsbeek N (1999) Limewater absorption and calcite crystal formation on a limewater-impregnated secco wall painting. Stud Conserv 44:145–156

    CAS  Google Scholar 

  13. D’Armada P, Hirst E (2012) Nano-Lime for consolidation of plaster and stone. J Arch Conserv 18:63–80

    Google Scholar 

  14. Nunes C, Viani A, Ševcík R (2020) Microstructural analysis of lime paste with the addition of linseed oil, stand oil and rapeseed oil. Constr Build Mater 238:117780

    Article  CAS  Google Scholar 

  15. Nunes C, Slížková Z (2014) Hydrophobic lime based mortars with linseed oil: characterization and durability assessment. Cem Concr Res 61-62:28–39

    Article  CAS  Google Scholar 

  16. Gheno G, Badetti E, Brunelli A, Ganzerla E (2018) Consolidation of Vicenza, Arenaria and Istria stones: a comparison between nano-based products and acrylate derivatives. J Cult Herit 32:44–52

    Article  Google Scholar 

  17. Sbardella F, Bracciale M, Santarelli M, Asua J (2020) Waterborne modified-silica/acrylates hybrid nanocomposites as surface protective coatings for stone monuments. Prog Org Coat 149:105897

    Article  CAS  Google Scholar 

  18. Vinçotte A, Beauvoit E, Boyard N, Guilminot E (2019) Effect of solvent on PARALOID B72 and B44 acrylic resins used as adhesives in conservation. Herit Sci 7:42

    Article  Google Scholar 

  19. Kaplana Z, Bökea H, Sofuoglu A, İpekoğlua B (2019) Long term stability of biodegradable polymers on building limestone. Prog Org Coat 131:378–388

    Article  Google Scholar 

  20. Alonso-Villar E, Rivas T, Pozo-Antonio J (2019) Adhesives applied to granite cultural heritage: effectiveness, harmful effects and reversibility. Constr Build Mater 223:951–964

    Article  CAS  Google Scholar 

  21. Selwitz C (1990) The use of epoxy resins for stone consolidation. MRS Online Proc Libr 185:181–191

    Article  Google Scholar 

  22. Ietto F, Perri F, Miriello D, Ruffolo S, Laganà A, Le Pera E (2018) Epoxy resin for the slope consolidation intervention on the Tropea Sandstone Cliff (Southern Calabria, Italy). Geoheritage 10:287–300

    Article  Google Scholar 

  23. Ginell W, Kotlik P, Selwitz C, Wheeler G (1995) Recent developments in the use of epoxy resins for stone consolidation. MRS Online Proc Libr 352:823–829

    Article  CAS  Google Scholar 

  24. Tesser E, Lazzarini L, Bracci S (2018) Investigation on the chemical structure and ageing transformations of the cycloaliphatic epoxy resin EP2101 used as stone consolidant. J Cult Herit 71:72–82

    Article  Google Scholar 

  25. Castelvetro V, Aglietto M, Ciardelli F, Chiantore O, Lazzari M, Toniolo L (2002) Structure control, coating properties, and durability of fluorinated acrylic-based polymers. J Coat Technol 74:57–66

    Article  CAS  Google Scholar 

  26. Zhang XY, Wen W, Yu H, Chen Q, Xu J, Yang D, Qiu F (2016) Preparation and artificial ageing tests in stone conservation of fluorosilicone vinyl acetate/acrylic/epoxy polymers. Chemical Paper, 70:1621–1631

    Google Scholar 

  27. Timo G, Wido J (2018) Nineteenth-century stone protection: The invention and early research on fluosilicates and their dispersion into Europe, In Building Knowledge, Constructing Histories, Wouters I, Van de Voorde S, Bertels I, Espion B, De Jonge K, Zastavni D (eds) CRC Press, London

  28. Caprai V, Lazaro A, Brouwers H (2019) Waterglass impregnation of municipal solid waste incineration bottom ash applied as sand replacement in mortars. Waste Manag 86:87–96

    Article  CAS  Google Scholar 

  29. Xie Z, Duan Z, Zhao Z, Li R, Zhou B, Yang D, Hu Y (2021) Nano-materials enhanced protectants for natural stone surfaces. Herit Sci 9:122

    Article  CAS  Google Scholar 

  30. Ksinopoulou E, Bakolas A, Moropoulou A (2016) Modifying Si-based consolidants through the addition of colloidal nano-particles. Appl Phys A: Mater Sci Process 122:267

    Article  Google Scholar 

  31. Licchelli M, Malagodi M, Weththimuni M, Zanchi C (2014) Nanoparticles for conservation of bio-calcarenite stone. Appl Phys A Mater Sci Process 114:673–683

    Article  CAS  Google Scholar 

  32. Stucchi N, Tesser E, Zaccariello G, Antonelli F, Benedetti A (2022) Evaluating two nanosilica dimensional range for the consolidation of degraded silicate stones. Constr Build Mater 329:127191

    Article  CAS  Google Scholar 

  33. Barnoos V, Shekofteh A, Oudbashi O (2022) Experimental evaluation of the consolidation treatments of low porosity limestone from the historic monument of the Anahita Temple of Kangavar, Iran. Archaeol Anthropol Sci 14:63

    Article  Google Scholar 

  34. Zárraga R, Alvarez-Gasca D, Cervantes J (2002) Solvent effect on TEOS film formation in the sandstone consolidation process. Silicon Chem 1:397–402

    Article  Google Scholar 

  35. Franzoni E, Graziani G, Sassoni E, Bacilieri G, Griffa M, Lura P (2015) Solvent-based ethyl silicate for stone consolidation: influence of the application technique on penetration depth, efficacy and pore occlusion. Mater Struct 48:3503–3515

    Article  CAS  Google Scholar 

  36. Pötzl C, Rucker S, Wendler E, Siegesmund S (2022) Consolidation of volcanic tuffs with TEOS and TMOS: a systematic study. Environ Earth Sci 81:13

    Article  Google Scholar 

  37. Xu F, Li D, Zhang H, Peng W (2012) TEOS/HDTMS inorganic–organic hybrid compound used for stone protection. J Sol–Gel Sci Technol 61:429–435

    Article  CAS  Google Scholar 

  38. Broda M, Dąbek I, Dutkiewicz A, Dutkiewicz M, Popescu C, Mazela B, Maciejewski H (2020) Organosilicons of different molecular size and chemical structure as consolidants for waterlogged archaeological wood a new reversible and retreatable method. Sci Rep. 2188:10

    Google Scholar 

  39. Xu F, Zeng W, Li D (2019) Recent advance in alkoxysilane-based consolidants for stone. Prog Org Coat 127:45–54

    Article  CAS  Google Scholar 

  40. Scherer G, Wheeler G (2009) Silicate consolidants for stone. Key Eng Mater 391:1–25

    Article  CAS  Google Scholar 

  41. Cultrone G, Sánchez-Ibáñez V (2018) Consolidation with ethyl silicate: how the amount of product alters the physical properties of the bricks and affects their durability. Materiales de Construcción 68:e173

    Article  CAS  Google Scholar 

  42. Tesser E, Antonelli F, Sperni L, Ganzerla R, Maravelaki N (2014) Study of the stability of siloxane stone strengthening agents. Polym Degrad Stab 110:231–240

    Article  Google Scholar 

  43. Remzova M, Zouzelka R, Lukes J, Rathousky J (2019) Potential of advanced consolidants for the application on sandstone. Appl Sci 9:5252

    Article  CAS  Google Scholar 

  44. de los Santos D, Montes A, Sánchez-Coronilla A, Navas J (2014) Sol−gel application for consolidating stone: an example of project-based learning in a physical chemistry lab. J Chem Educ 91:1481–1485

    Article  Google Scholar 

  45. Bescher E, Mackenzie J (2017) Sol–Gel Materials for Art Conservation, In Handbook of Sol-Gel Science and Technology, Klein L, Aparicio M, Jitianu A (eds) Springer, 1–15

  46. Luo Y, Xiao L, Zhang X (2015) Characterization of TEOS/PDMS/HA nanocomposites for application as consolidant/hydrophobic products on sandstones. J Cult Herit 16:470–478

    Article  Google Scholar 

  47. Jia M, Liang HeL, Zhao X, Simon S (2019) Hydrophobic and hydrophilic SiO2-based hybrids in the protection of sandstone for anti-salt damage. J Cult Herit 40:80–91

    Article  Google Scholar 

  48. Facio S, Ordoñez J, Almoraima Gil M, Carrascosa L, Mosquera JM (2018) New consolidant-hydrophobic treatment by combining SiO2 composite and fluorinated alkoxysilane: application on decayed biocalcareous stone from an 18th century cathedral. Coatings 8:170

    Article  Google Scholar 

  49. de Ferri L, Lottici P, Lorenzi A, Montenero A, Salvioli-Mariani E (2011) Study of silica nanoparticles—polysiloxane hydrophobic treatments for stone-based monument protection. J Cult Herit 12:356–363

    Article  Google Scholar 

  50. Ferreira Pinto AP, Delgado Rodrigues J (2008) Stone consolidation: the role of treatment procedures. J Cult Herit 9:38–53

    Article  Google Scholar 

  51. Praticó Y, Caruso K, Delgado Rodrigues J, Girardet F, Sassoni E, Scherer G, Vergés‐Belmin V, Weiss N, Wheeler G, Flatt R (2019) Stone consolidation: a critical discussion of theoretical insights and field practice. RILEM Tech Lett 4:145–153

    Article  Google Scholar 

  52. Laurie A (1924) Perservatiion Stone. USA Patente 1561988.

  53. Mosquera M, Pozo J, Esquivias L (2003) Stress during drying of two stone consolidants applied in monumental conservation. J Sol–Gel Sci Technol 26:1227–1231

    Article  CAS  Google Scholar 

  54. Scherer G (1992) Crack-tip stress in gels. J Non-Cryst Solid 144:210–216

    Article  Google Scholar 

  55. Brus J, Kotlik P (1996) Cracking of organosilicone stone consolidants in gel form gel form. Stud Conserv 41:55–59

    Article  CAS  Google Scholar 

  56. Salazar-Hernández C, Zárraga R, Alonso S, Sugita S, Calixto S, Cervantes J (2009) Effect of solvent type on polycondensation of TEOS catalyzed by DBTL as used for stone consolidation. J Sol–Gel Sci Technol 49:301–310

    Article  Google Scholar 

  57. Cervantes J, Zárraga R, Salazar-Hernández C (2012) Organotin catalysts in organosilicon chemistry. Appl Organomet Chem 26:157–163

    Article  CAS  Google Scholar 

  58. Jokinen M, Györvary E, Rosenholm J (1998) Viscoelastic characterization of three different sol–gel derived silica gels. Colloids Surf A Physicochem Eng Asp 141:205–216

    Article  CAS  Google Scholar 

  59. Salazar-Hernández C, Cervantes J, Alonso S (2010) Viscoelastic characterization of TEOS sols in three different solvents when DBTL is used as polycondensation catalyst. J Sol–Gel Sci Technol 54:77–82

    Article  Google Scholar 

  60. Mohammad A, Al-Dosari M, Darwish S, El-Hafez M, Elmarzugi N, Al-Mouallimi N, Mansour S (2016) Effects of adding nanosilica on performance of ethylsilicat (TEOS) as consolidation and protection materials for highly porous artistic stone. J Mater Sci Eng A 6:192–204

    Google Scholar 

  61. Barberena-Fernández A, Blanco-Varela M, Carmona-Quiroga P (2019) Use of nanosilica- or nanolime-additioned TEOS to consolidate cementitious materials in heritage structures: Physical and mechanical properties of mortars. Cem Concr Compos 95:271–276

    Article  Google Scholar 

  62. Becerra J, Zaderenko A, Gómez-Morón M, Ortiz P (2021) Nanoparticles applied to stone buildings. Inter J Arch Herit 15:1320–1335

    Article  Google Scholar 

  63. D’Amato R, Caneve L, Giancristofaro C, Persia F, Pilloni L, Rinaldi A (2014) Development of nanocomposites for conservation of artistic stones. Proc Inst Mech Eng, Part N J Nanoengineering Nanosyst 228:19–26

    Article  Google Scholar 

  64. Mahmoud HM (2021) An effective polymer nanocomposite based on tetraethoxysilane (TEOS) and SiO2-Al2O3 nanoparticles for super protection of damaged ancient Egyptian wall paintings. Pigm Resin Technol 51:344–353

    Article  Google Scholar 

  65. Ksinopoulou E, Bakolas A, Moropoulou A (2014) Modification of Si-based consolidants by the addition of colloidal nanoparticles: application in porous stones. J Nano Res 27:143–152

    Article  Google Scholar 

  66. Miliani C, Velo-Simpson M, Scherer G (2007) Particle-modified consolidants: a study on the effect of particles on sol-gel properties and consolidation effectiveness. J Cult Herit 8:1–6

    Article  Google Scholar 

  67. Mosquera MJ, Bejarano M, de la Rosa-Fox N, Esquivias L (2003) Producing crack-free colloid-polymer hybrid gels by tailoring porosity. Langmuir 19:951–957

    Article  CAS  Google Scholar 

  68. Zendri E, Biscontin E, Nardini I, Riato S (2007) Characterization and reactivity of silicatic consolidants. Constr Build Mater 21:1098–1106

    Article  Google Scholar 

  69. Salazar-Hernández C, Puy-Alquiza MJ, Miranda-Avilés R, Salazar-Hernández M, Mendoza-Miranda J, Mocada-Sánchez CD, del Ángel-Soto J (2021) Comparative study of TEOS-consolidants for adobe building conservation. J Sol–Gel Sci Technol 97:685–696

    Article  Google Scholar 

  70. Mosquera MJ, de los Santos DM, Valdez-Castro L, Esquivias L (2008) New route for producing crack-free xerogels: obtaining uniform pore size. J Non-Cryst Solids 354:645–650

    Article  CAS  Google Scholar 

  71. Mosquera MJ, de los Santos DM, Rivas T, Sanmartín P, Silva B (2009) New nanomaterials for protecting and consolidating stone. J Nano Res 8:1–12

    Article  CAS  Google Scholar 

  72. Weththimuni ML, Chobba MB, Sacchi D, Messaoud M, Licchelli M (2022) Durable polymer coatings: a comparative study of PDMS-based nanocomposites as protective coatings for stone. Mater, Chemestry 4:60–76

    CAS  Google Scholar 

  73. Mosquera MJ, de los Santos DM, T Rivas (2010) Surfactant-synthesized ormosils with application to stone restoration. Langmuir 26:6737–6745

    Article  CAS  Google Scholar 

  74. Illescas J, Mosquera MJ (2011) Surfactant-synthesized PDMS/silica nanomaterials improve robustness and stain resistance of carbonate stone. J Phys Chem C 115:14624–14634

    Article  CAS  Google Scholar 

  75. Weththimuni ML, Chobba MB, Tredici I, Licchelli M (2020) Polydimethylsiloxane (PDMS)/ZrO2-doped ZnO nanocomposites as protective coatings for stone materials, International Conference on Metrology for Archaeology and Cultural Heritage, Trento Italy

  76. Li D, Xu F, Liu Z, Zhu J, Zhang Q, Shao L (2013) The effect of adding PDMS-OH and silica nanoparticles on sol–gel properties and effectiveness in stone protection. Appl Surf Sci 266:368–374

    Article  CAS  Google Scholar 

  77. Zhao J, Luo H, Wang L, Li W, Zhou T, Rong B (2013) TEOS/PDMS-OH hybrid material for the consolidation of damaged pottery. Herit Sci 1:12

    Article  Google Scholar 

  78. Liu Y, Liu J (2016) Synthesis of TEOS/PDMS-OH/CTAB composite coating material as a new stone consolidant formulation. Constr Build Mater 122:90–94

    Article  CAS  Google Scholar 

  79. Zárraga R, Cervantes J, Salazar-Hernandez C, Wheeler G (2010) Effect of the addition of hydroxyl-terminated polydimethylsiloxane to TEOS-based stone consolidants. J Cult Herit 11:138–144

    Article  Google Scholar 

  80. Peng X, Wang Y, Ma XF, Bao H, Huang X, Zhou H, Luo H, Wang X (2020) Sol-Gel derived hybrid materials for conservation of fossils. J Sol-Gel Sci Technol 94:347–355

    Article  CAS  Google Scholar 

  81. Liu R, Han X, Huang X, Li W, Lou H (2013) Preparation of three-component TEOS-based composites for stone conservation by sol–gel process. J Sol-Gel Sci Technol 68:19–30

    Article  CAS  Google Scholar 

  82. Kapridaki C, Verganelaki A, Dimitriadou P, Maravelaki-Kalaitzaki P (2018) Conservation of monuments by a three-layered compatible treatment of TEOS-nano-calcium oxalate consolidant and TEOS-PDMS-TiO2 hydrophobic/photoactive hybrid nanomaterials. Materials 11:684

    Article  Google Scholar 

  83. Kapetanaki K, Vazgiouraki E, Stefanakis D, Fotiou A, Anyfantis G, García-Lodeiro I, Blanco-Varela M, Arabatzis I, Maravelaki PN (2020) TEOS modified with nano-calcium oxalate and PDMS to protect concrete based cultural heritage buildings. Front Mater 7:16

    Article  Google Scholar 

  84. Kim E, Won J, Do JY, Kim S, Kang Y (2009) Effects of silica nanoparticle and GPTMS addition on TEOS-based stone consolidants. J Cult Herit 10:214–221

    Article  Google Scholar 

  85. Salazar-Hernández C, Puy Alquiza MJ, Salgado P, Cervantes J (2010) TEOS–colloidal silica–PDMS-OH hybrid formulation used for stone consolidation. Appl Organomet Chem 24:481–488

    Google Scholar 

  86. Salazar-Hernández C, Cervantes J, Puy-Alquiza MJ, Miranda R (2015) Conservation of building materials of historic monuments using ahybrid formulation. J Cult Herit 16:185–191

    Article  Google Scholar 

  87. Kapridaki C, Maravelaki N (2015) TiO2–SiO2–PDMS nanocomposites with self-cleaning properties for stone protection and consolidation. Geol Soc Lond 416:285–292

    Article  Google Scholar 

  88. Zarzuela R, Carbú M, Almoraima Gil ML, Cantoral JM, Mosquera MJ (2019) Ormosils loaded with SiO2 nanoparticles functionalized with Ag as multifunctional superhydrophobic/biocidal/consolidant treatments for buildings conservation. Nanotechnology 30:345701

    Article  CAS  Google Scholar 

  89. Bellissima F, Bonini M, Giorgi R, Baglioni P, Barresi G, Mastromei G, Perito B (2014) Antibacterial activity of silver nanoparticles grafted on stone surface. Environ Sci Pollut Res 21:13278–13286

    Article  CAS  Google Scholar 

  90. Ban M, Mascha E, Weber J, Rohatsch A, Delgado Rodriguez J (2019) Efficiency and compatibility of selected alkoxysilanes on porous carbonate and silicate stones. Materials 12:156

    Article  CAS  Google Scholar 

  91. Molina E, Fiol C, Cultrone G (2018) Assessment of the efficacy of ethyl silicate and dibasic ammonium phosphate consolidants in improving the durability of two building sandstones from Andalusia (Spain). Environ Earth Sci 77:302

    Article  Google Scholar 

  92. Franzoni E, Leemann A, Lura P (2014) Use of TEOS for fired-clay bricks consolidation. Mater Struct 47:1175–1184

    Article  CAS  Google Scholar 

  93. Gemelli GMC, Zarzuela R, Alarcón-Castellano F, Mosquera MJ, Almoraina Gil ML (2021) Alkoxysilane-based consolidation treatments: Laboratory and 3-years In-Situ assessment tests on biocalcarenite stone from Roman Theatre (Cádiz). Constr Build Mater 312:125398

  94. Briffa S, Vella D, Mosquera MJ (2013) A study of nanoparticle-based silane consolidants for globigerina limestone. J Malta Chamb Scientists 1:55–64

    Google Scholar 

  95. Maravelaki-Kalaitzaki P, Kallithrakas-Kontos N, Agioutantis Z, Maurigiannakis S, Korakaki D (2008) A comparative study of porous limestones treated with silicon-based strengthening agents. Prog Org Coat 62:49–60

    Article  CAS  Google Scholar 

  96. Gemelli G, Zarzuela R, Fernandez F, Mosquera MJ (2021) Compatibility, effectiveness and susceptibility to degradation of alkoxysilane-based consolidation treatments on a carbonate stone. J Build Eng 42:102840

    Article  Google Scholar 

  97. Randazzo L, Venuti V, Paladini G, Crupi V, Majolino D, Ott F, Ricca M, Rovella N, La Russa M (2020) Evaluating the protecting effects of two consolidants applied on Pietra di Lecce limestone: a neutronographic study. J Cult Herit 46:31–41

    Article  Google Scholar 

  98. Graziani G, Sassoni E, Franzoni E (2015) Consolidation of porous carbonate stones by an innovative phosphate treatment: mechanical strengthening and physical-microstructural compatibility in comparison with TEOS-based treatments. Herit Sci 3:1

    Article  Google Scholar 

  99. Sena da Fonseca B, Ferreira Pinto AP, Picarra S, Montemor M (2020) Alkoxysilane-based sols for consolidation of carbonate stones: Proposal of methodology to support the design and development of new consolidants. J Cult Herit 43:51–63

    Article  Google Scholar 

  100. Rodrigues A, Sena da Fonseca B, Ferreira Pinto AP, Picarra S, Montemor M (2022) TEOS nanocomposites for the consolidation of carbonate stone: the effect of nano-HAp and nano-SiO2 modifiers. Materials 15:981

    Article  CAS  Google Scholar 

  101. Rodrigues A, Sena da Fonseca B, Ferreira Pinto AP, Picarra S, Montemor M (2021) Exploring alkaline routes for production of TEOS-based consolidants for carbonate stones using amine catalysts. N J Chem 45:3833–3847

    Article  CAS  Google Scholar 

  102. Sassoni E, Franzoni E, Pigino B, Scherer G, Naidu S (2013) Consolidation of calcareous and siliceous sandstones by hydroxyapatite: comparison with a TEOS-based consolidant. J Cult Herit 145:e103–e108

    Article  Google Scholar 

  103. Naidu S, Liu C, Scherer G (2015) Hydroxyapatite-based consolidant and the acceleration of hydrolysis of silicate-based consolidants. J Cult Herit 16:94–101

    Article  Google Scholar 

  104. Xu F, Xiang N, Li D, Yu J, Wu D, Zhang Q (2014) Use of coupling agents for increasing passivants and cohesion abilityof consolidant on limestone. Progr Org Coat 77:1613–1618

    Article  CAS  Google Scholar 

  105. Ferreira Pinto AP, Delgado Rodrigues J, Bracci S, Sacchi B (2008) The action of APTES as coupling agent of ethylsilicate for limestone and marble consolidation. Proceedings Int. Symp. Stone Consolidation in Cultural Heritage. In: Delgado Rodríguez J, Mimoso JM (eds), p 71–79, Res Pract, Lisbon

  106. Sena da Fonseca B, João Ferreira B, Taryba M, Picarra S, Ferreira Pinto AP, Montemor M (2019) Alkoxysilane-based sols for consolidation of carbonate stones: impact of the carbonate medium in the sol-gel processes. J Cult Herit 37:63–72

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the financial support of the Instituto Politécnico Nacional through grant SIP-20221172.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Carmen Salazar-Hernández or Mercedes Salazar-Hernández.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salazar-Hernández, C., Salazar-Hernández, M. & Mendoza-Miranda, J.M. The sol–gel process applied in the stone conservation. J Sol-Gel Sci Technol 106, 495–517 (2023). https://doi.org/10.1007/s10971-022-05931-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-022-05931-9

Keywords

Navigation