Skip to main content
Log in

Composition evolution and electrical properties of VO2 thin films induced by annealing temperature

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this study, vanadium dioxide thin films were fabricated on Al2O3 (0001) substrates by sol-gel method and subsequent annealing process. The effects of annealing temperature on the structure, chemical state, surface morphology and electrical properties of the films were systematically studied. The results displayed that with the annealing temperature increasing up to 520 °C, the composition evolution experienced four processes: the reduction of V5+ to V4+ (or V3+), the comproportionation of V5+/V3+ to V4+, the oxidation of V3+ to V4+, and the secondary reduction of V5+ to V3+. Accompanied with the secondary reduction at 520 °C, the disappearance of grain boundaries was observed on the film surface. Furthermore, as the annealing temperature increased from 420 °C to 470 °C and then 520 °C, the prepared films showed good phase transition property with the resistance change up to nearly four orders of magnitude, and the phase transition temperatures were 62.8 °C, 61.8 °C and 61.1 °C respectively, showing a slow downward trend. The results not only revealed the mutual transformation of various vanadium oxides during the annealing treatment, but also supplied some clues for optimizing the parameters for VO2 film preparation with high quality.

VO2 (M) thin films have been prepared by sol-gel method and subsequent annealing in high-purity nitrogen atmosphere. With the increase of annealing temperature, the evolution of film composition experiences four stages, namely, the reduction process (V5+ → V4+/V3+) below 370 °C, the comproportionation reaction from 370 °C to 420 °C (V5+ + V3+ → V4+), the oxidation process from 420 °C to 470 °C (V3+ → V4+) and the secondary reduction process from 470 °C to 520 °C (V5+ → V3+). When the annealing temperatures are set at 420 °C, 470 °C and 520 °C, the obtained VO2 films show good phase transition characteristics with the resistance changes up to nearly four orders of magnitude, and the related phase transition temperatures display a monotonic decreasing trend.

Highlights

  • VO2 films were prepared on Al2O3 (0001) by sol-gel method and subsequent annealing process.

  • The composition evolution image with annealing temperature is proposed in terms of XPS results.

  • Accompanied by the secondary reduction process, the grain boundaries disappear synchronously.

  • Both the Tc and the hysteresis width can be reduced by higher annealing temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Morin FJ (1959) Oxides which show a metal-to-insulator transition at the neel temperature. Phys Rev Lett 3(1):34–36. https://doi.org/10.1103/PhysRevLett.3.34

    Article  CAS  Google Scholar 

  2. Manca N, Pellegrino L, Kanki T, Venstra WJ, Mattoni G, Higuchi Y, Tanaka H, Caviglia AD, Marré D (2017) Selective high-frequency mechanical actuation driven by the VO2 electronic instability. Adv Mater 29(35):1701618. https://doi.org/10.1002/adma.201701618

    Article  CAS  Google Scholar 

  3. El Haimeur A, Mrigal A, Bakkali H, El Gana L, Nouneh K, Addou M, Dominguez M (2020) Optical, magnetic, and electronic properties of nanostructured VO2 thin films grown by spray pyrolysis: DFT first principle study. J Supercond Nov Magn 33(2):511–517. https://doi.org/10.1007/s10948-019-05216-3

    Article  CAS  Google Scholar 

  4. El-Desoky MM, Morad I, Ali MA, Ali AM, Sayed MA, Algarni H, Abd-Rehim AF (2021) Annealing temperatures effect on the electrical and structural properties of nanocrystalline vanadium dioxide films prepared by sol-gel technique. Appl Phys A: Mater Sci Process 127(5):1–8. https://doi.org/10.1007/s00339-021-04540-7

    Article  CAS  Google Scholar 

  5. Hendaoui A (2021) Substrate temperature-dependent structural, optical, and electrical properties of thermochromic VO2(M) nanostructured films grown by a one-step pulsed laser deposition process on smooth quartz substrates. Adv Condens Matter Phys 2021:7700676. https://doi.org/10.1155/2021/7700676

    Article  Google Scholar 

  6. Chen KH, Cheng CM, Kao MC, Chang KC, Chang TC, Tsai TM, Wu S, Su FY (2017) Influence of thermal annealing treatment on bipolar switching properties of vanadium oxide thin-film resistance random-access memory devices. J Electron Mater 46(4):2147–2152. https://doi.org/10.1007/s11664-016-5148-3

    Article  CAS  Google Scholar 

  7. Xu F, Cao X, Luo HJ, Jin P (2018) Recent advances in VO2-based thermochromic composites for smart windows. J Mater Chem C 6(8):1903–1919. https://doi.org/10.1039/c7tc05768g

    Article  CAS  Google Scholar 

  8. Kabir S, Nirantar S, Zhu LC, Ton-That C, Jain SK, Kayani ABA, Murdoch BJ, Sriram S, Walia S, Bhaskaran M (2020) Phase change vanadium dioxide light sensors. Appl Mater Today 21:100833. https://doi.org/10.1016/j.apmt.2020.100833

    Article  Google Scholar 

  9. Zou ZR, Zhang ZH, Xu J, Li GQ, Xiong R, Liu Y, Shi J (2021) Phase transition mechanism and application of silicon-doped VO2 thin films to smart windows. J Mater Sci: Mater Electron 32(19):23825–23833. https://doi.org/10.1007/s10854-021-06752-2

    Article  CAS  Google Scholar 

  10. Koussi EK, Bourquard F, Tite T, Jamon D, Garrelie F, Jourlin Y (2020) Synthesis of vanadium oxides by pulsed laser deposition and rapid thermal annealing. Appl Surf Sci 521:146267. https://doi.org/10.1016/j.apsusc.2020.146267

    Article  CAS  Google Scholar 

  11. Kim D, Kim M, Yi J, Nam SH, Boo JH, Park YS, Lee J (2017) Growth and characterization of VO2 thin film by pulsed DC sputtering of optical switching applications. Sci Adv Mater 9(8):1415–1419. https://doi.org/10.1166/sam.2017.2937

    Article  CAS  Google Scholar 

  12. Rajeswaran B, Umarji AM (2020) Defect engineering of VO2 thin films synthesized by chemical vapor deposition. Mater Chem Phys 245:122230. https://doi.org/10.1016/j.matchemphys.2019.122230

    Article  CAS  Google Scholar 

  13. Nazari S, Charpentier PA (2020) Sol-gel processing of VO2 (M) in supercritical CO2 and supercritical CO2/ionic liquid biphasic system. J Supercrit Fluids 165:104989. https://doi.org/10.1016/j.supflu.2020.104989

    Article  CAS  Google Scholar 

  14. Verma D, Singh D, Kumar P, Avasthi P, Balakrishnan V (2019) Gram scale synthesis of monoclinic VO2 microcrystals by hydrothermal and argon annealing treatment. Ceram Int 45(3):3554–3562. https://doi.org/10.1016/j.ceramint.2018.11.014

    Article  CAS  Google Scholar 

  15. Wu J, Huang WX, Shi QW, Cai JH, Zhao D, Zhang YB, Yan JZ (2013) Effect of annealing temperature on thermochromic properties of vanadium dioxide thin films deposited by organic sol-gel method. Appl Surf Sci 268:556–560. https://doi.org/10.1016/j.apsusc.2013.01.007

    Article  CAS  Google Scholar 

  16. Thorsteinsson EB, Shayestehaminzadeh S, Ingason AS, Magnus F, Arnalds UB (2021) Controlling metal-insulator transitions in reactively sputtered vanadium sesquioxide thin films through structure and stoichiometry. Sci Rep. 11(1):1–10. https://doi.org/10.1038/s41598-021-85397-x

    Article  CAS  Google Scholar 

  17. Lv XR, Chai X, Lv L, Cao YZ, Zhang YZ, Song LX (2021) Preparation of porous Mo-doped VO2 films via atomic layer deposition and post annealing. Jpn J Appl Phys 60(8):085501. https://doi.org/10.35848/1347-4065/ac1038

    Article  CAS  Google Scholar 

  18. Wang YF, Li MC, Zhao LC (2007) The effects of vacuum annealing on the structure of VO2 thin films. Surf Coat Technol 201(15):6772–6776. https://doi.org/10.1016/j.surfcoat.2006.09.097

    Article  CAS  Google Scholar 

  19. Liu YY, Liu JC, Li YB, Wang DP, Ren L, Zou KS (2016) Effect of annealing temperature on the structure and properties of vanadium oxide films. Opt Mater Express 6(5):1552–1560. https://doi.org/10.1364/ome.6.001552

    Article  CAS  Google Scholar 

  20. Sang JX, Zheng T, Xu L, Zhou X, Tian SJ, Sun JT, Xu XF, Wang JQ, Zhao SG, Liu Y (2021) Modulating the metal-insulator transition in VO2/Al2O3 (001) thin films by grain size and lattice strain. J Alloy Compd 876:160208. https://doi.org/10.1016/j.jallcom.2021.160208

    Article  CAS  Google Scholar 

  21. Choi Y, Lee D, Song S, Kim J, Ju TS, Kim H, Kim J, Yoon S, Kim Y, Phan TB, Bae JS, Park S (2021) Correlation between symmetry and phase transition temperature of VO2 films deposited on Al2O3 substrates with various orientations. Adv Electron Mater 7(4):2000874. https://doi.org/10.1002/aelm.202000874

    Article  CAS  Google Scholar 

  22. Pan GP, Yin JH, Ji KL, Li X, Cheng XW, Jin HB, Liu JP (2017) Synthesis and thermochromic property studies on W doped VO2 films fabricated by sol-gel method. Sci Rep. 7:1–10. https://doi.org/10.1038/s41598-017-05229-9

    Article  CAS  Google Scholar 

  23. Wang F, Liu Y, Liu CY (2009) Molten salt synthesis and localized surface plasmon resonance study of vanadium dioxide nanopowders. J Solid State Chem 182(12):3249–3253. https://doi.org/10.1016/j.jssc.2009.09.014

    Article  CAS  Google Scholar 

  24. Victor JL, Gaudon M, Penin N, Chiron A, Chung UC, Viraphong O, Rougier A (2021) Innovative sintering process for fabrication of thermochromic smooth VO2 ceramics. J Alloy Compd 890:161890. https://doi.org/10.1016/j.jallcom.2021.161890

    Article  CAS  Google Scholar 

  25. Chae BG, Kim HT, Yun SJ, Kim BJ, Lee YW, Youn DH, Kang KY (2006) Highly oriented VO2 thin films prepared by sol-gel deposition. Electrochem Solid-State Lett 9(1):C12–C14. https://doi.org/10.1149/1.2135430

    Article  CAS  Google Scholar 

  26. Guo YX, Xu HY, Zou CW, Yang ZY, Tong B, Yu JY, Zhang YJ, Zhao L, Wang YL (2015) Evolution of structure and electrical properties with annealing time in solution-based VO2 thin films. J Alloy Compd 622:913–917. https://doi.org/10.1016/j.jallcom.2014.11.027

    Article  CAS  Google Scholar 

  27. Shvets P, Dikaya O, Maksimova K, Goikhman A (2019) A review of Raman spectroscopy of vanadium oxides. J Raman Spectrosc 50(8):1226–1244. https://doi.org/10.1002/jrs.5616

    Article  CAS  Google Scholar 

  28. Ureña-Begara F, Crunteanu A, Raskin JP (2017) Raman and XPS characterization of vanadium oxide thin films with temperature. Appl Surf Sci 403:717–727. https://doi.org/10.1016/j.apsusc.2017.01.160

    Article  CAS  Google Scholar 

  29. Li WB, Huang JF, Cao LY, Li XF, Chen SY, Feng LL (2020) Polycrystalline VO2(M) with well-dispersed crystalline zones for enhanced electroactivity of lithium-ion batteries. J Alloy Compd 812:152122. https://doi.org/10.1016/j.jallcom.2019.152122

    Article  CAS  Google Scholar 

  30. Zhang YF, Zhang JC, Zhang XZ, Mo SB, Wu WB, Niu F, Zhong YL, Liu X, Huang C, Liu XH (2013) Direct preparation and formation mechanism of belt-like doped VO2(M) with rectangular cross sections by one-step hydrothermal route and their phase transition and optical switching properties. J Alloy Compd 570:104–113. https://doi.org/10.1016/j.jallcom.2013.03.053

    Article  CAS  Google Scholar 

  31. Dou SL, Zhao JP, Zhang WY, Zhao HP, Ren FF, Zhang LP, Chen X, Zhan YH, Li Y (2020) A universal approach to achieve high luminous transmittance and solar modulating ability simultaneously for vanadium dioxide smart coatings via double-sided localized surface plasmon resonances. ACS Appl Mater Interfaces 12(6):7302–7309. https://doi.org/10.1021/acsami.9b17923

    Article  CAS  Google Scholar 

  32. Kirihara M, Yoshida K, Noguchi T, Naito S, Matsumoto N, Ema Y, Torii M, Ishizuka Y, Souta I (2010) Effective cleavage of ditertiary glycols via vanadium(V)-catalyzed aerobic oxidation. Tetrahedron Lett 51(28):3619–3622. https://doi.org/10.1016/j.tetlet.2010.04.134

    Article  CAS  Google Scholar 

  33. Hanson SK, Wu RL, Silks LAP (2012) C-C or C-O bond cleavage in a phenolic lignin model compound: selectivity depends on vanadium catalyst. Angew Chem Int Ed 51(14):3410–3413. https://doi.org/10.1002/anie.201107020

    Article  CAS  Google Scholar 

  34. de Souza AM, Cercena R, da Costa Duarte R, Arcaro S, Dal Bó AG (2020) The influence of precursors and additives on the hydrothermal synthesis of VO2: A route for tuning the metal-insulator transition temperature. Ceram Int 46(15):23560–23566. https://doi.org/10.1016/j.ceramint.2020.06.127

    Article  CAS  Google Scholar 

  35. Meng YF, Sang JX, Liu Z, Xu XF, Tan ZY, Wang CR, Wu BH, Wang C, Cao JC, Chen XS (2019) Micro-nano scale imaging and the effect of annealing on the perpendicular structure of electrical-induced VO2 phase transition. Appl Surf Sci 470:168–176. https://doi.org/10.1016/j.apsusc.2018.11.131

    Article  CAS  Google Scholar 

  36. Xu XF, He XF, Wang HY, Gu QJ, Shi SX, Xing HZ, Wang CR, Zhang J, Chen XS, Chu JH (2012) The extremely narrow hysteresis width of phase transition in nanocrystalline VO2 thin films with the flake grain structures. Appl Surf Sci 261:83–87. https://doi.org/10.1016/j.apsusc.2012.07.098

    Article  CAS  Google Scholar 

  37. Yang TH, Mal S, Jin C, Narayan RJ, Narayan J (2011) Epitaxial VO2/Cr2O3/sapphire heterostructure for multifunctional applications. Appl Phys Lett 98(2):022105. https://doi.org/10.1063/1.3541649

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (11903001, U1938109), the Natural Science Research Project of the Higher Education Institutions of Anhui Province (KJ2016A143, KJ2019A0787) and the Doctor Foundation of Anhui Jianzhu University (2020QDZ29). We thank Dr. Yanfang Liu for her helpful discussion on XPS analysis.

Author contribution

QH and GY conceived this project and wrote the manuscript. ZD carried out the experiments and collected the literatures. SB and YL performed the synthesis and characterization of the films. All authors contributed to the general discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuxian Guo.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, H., Guo, Y., Zhang, D. et al. Composition evolution and electrical properties of VO2 thin films induced by annealing temperature. J Sol-Gel Sci Technol 104, 138–146 (2022). https://doi.org/10.1007/s10971-022-05912-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-022-05912-y

Keywords

Navigation