Skip to main content
Log in

Novel Kevlar® pulp-reinforced alumina-silica aerogel composites for thermal insulation at high temperature

  • Original Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Novel promising thermal insulator materials based on alumina-silica aerogel composites reinforced with Kevlar® pulp were prepared using less hazardous base catalysts and ambient pressure drying procedures. The base formulation included tetraethoxysilane (TEOS) and vinyltrimethoxysilane (VTMS) as silica precursors and hexamethyldisilazane (HMDZ) was used for the silylation of the composites. The incorporation of alumina phase in the aerogels was performed through aluminium chloride (AlCl3) or aluminium trisec-butoxide (ATSB) precursors, replacing a small part of Si (up to 15 mol%) by Al. For system optimisation, several parameters that could influence the key properties (bulk density, thermal conductivity and thermal stability) of the aerogel were investigated, namely the base catalysts, the washing and the heat treatment conditions. All the composites prepared were highly hydrophobic and their properties depended on the aluminium precursor used and its content. The most promising composites were those based on AlCl3, which achieved low bulk density and thermal conductivity values, down to 120 kg m−3 and 28 mW m−1 K−1 (Hot Disk®), and they were thermally stable up to 550 °C, indicating their suitability for thermal insulation applications in more harsh environments.

Highlights

  • Novel Kevlar pulp-reinforced alumina-silica aerogels with different precursors.

  • Nanocomposites´ properties are dependent on the alumina precursor and amount.

  • Optimization of post-processing of the gels different catalysts and solvents.

  • Heat treatment improves the thermal stability and mechanical resistance of aerogels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data used in this manuscript will be available upon request to the corresponding authors.

Code availability

This work does not involve the development of software or computational codes.

References

  1. Miyakita T, Hatakenaka R, Sugita H, Saitoh M, Hirai T (2014) Development of a new multi-layer insulation blanket with non-interlayer-contact spacer for space cryogenic mission. Cryogenics 64:112–120

    Article  CAS  Google Scholar 

  2. Moser M, Hoidn W (2016) Versatile thermal insulation for cryogenic upper stages. 46th international conference on environmental systems, https://ttu-ir.tdl.org/bitstream/handle/2346/67537/ICES_2016_119.pdf?sequence=1&isAllowed=y

  3. Trevino LA, Orndoff ES, Tang HH, Gould GL, Trifu R (2002) Aerogel-based insulation for advanced space suit. SAE Technical Paper 2002-01-2316

  4. Aegerter MA, Leventis N, Koebel MM (2011) Aerogels handbook, Springer Science & Business Media

  5. Gurav JL, Jung I-K, Park H-H, Kang ES, Nadargi DY (2010) Silica aerogel: synthesis and applications. J Nanomater ID 409310

  6. Maleki H, Durães L, Portugal A (2014) An overview on silica aerogels synthesis and different mechanical reinforcing strategies. J Non Cryst Solids 385:55–74

    Article  CAS  Google Scholar 

  7. Linhares T, de Amorim MTP, Durães L (2019) Silica aerogel composites with embedded fibres: a review on their preparation, properties and applications. J Mater Chem A 7(40):22768–22802

    Article  CAS  Google Scholar 

  8. Almeida CMR, Ghica ME, Durães L (2020) An overview on alumina-silica-based aerogels. Adv Colloid Interface Sci 282:102189

    Article  CAS  Google Scholar 

  9. Komarneni S, Roy R, Selvaraj U, Malla PB, Breval E (1993) Nanocomposite aerogels: The SiO2–Al2O3 system. J Mater Res 8:3163–3167

    Article  CAS  Google Scholar 

  10. Hernandez C, Pierre AC (2001) Evolution of the texture and structure of SiO2–Al2O3 xerogels and aerogels as a function of the Si to Al molar ratio. J Sol-Gel Sci Technol 20:227–243

    Article  CAS  Google Scholar 

  11. Aravind PR, Mukundan P, Krishna Pillai P, Warrier KGK (2006) Mesoporous silica–alumina aerogels with high thermal pore stability through hybrid sol–gel route followed by subcritical drying. Microporous Mesoporous Mater 96:14–20

    Article  CAS  Google Scholar 

  12. Hurwitz FI, Gallagher M, Olin TC, Shave MK, Ittes MΑ, Olafson KN, Fields MG, Rogers RB (2014) Optimization of alumina and aluminosilicate aerogel structure for high-temperature performance. Int J Appl Glass Sci 5(3):276–286

    Article  CAS  Google Scholar 

  13. Peng F, Jiang Y, Feng J, Li L, Cai H, Feng J (2020) A facile method to fabricate monolithic alumina–silica aerogels with high surface areas and good mechanical properties. J Eur Ceram Soc 40:2480–2488

    Article  CAS  Google Scholar 

  14. Jia H, Liu S, Mao Z, Wang D (2021) Preparation and properties of the Al2O3–SiO2 aerogel/alumina framework composite. Ceram Int 47:1466–1471

    Article  CAS  Google Scholar 

  15. Xu L, Jiang Y, Feng J, Feng J, Yue C (2015) Infrared-opacified Al2O3–SiO2 aerogel composites reinforced by SiC-coated mullite fibers for thermal insulations. Ceram Int 41:437–442

    Article  Google Scholar 

  16. Yang G, Jiang Y, Feng J, Zhang S, Feng J (2017) Synthesis of fibre reinforced Al2O3–SiO2 aerogel composite with high density uniformity via a facile high-pressure impregnation approach. Process Appl Ceram 11(3):185–190

    Article  CAS  Google Scholar 

  17. Liu R, Dong X, Xie S, Jia T, Xue Y, Liu J, Jing W, Guo A (2019) Ultralight, thermal insulating, and high-temperature-resistant mullite-based nanofibrous aerogels. Chem Eng J 360:464–472

    Article  CAS  Google Scholar 

  18. Peng F, Jiang Y, Feng J, Cai H, Feng J, Li L (2021) Thermally insulating, fiber-reinforced alumina–silica aerogel composites with ultra-low shrinkage up to 1500 °C. Chem Eng J 411:128402

    Article  CAS  Google Scholar 

  19. Yu Y, Peng K, Fang J, Zhang R, Wang G, Peng X (2018) Mechanical and thermal conductive properties of fiber-reinforced silica-alumina aerogels. Appl Cer Technol 15:1138–1145

    Article  CAS  Google Scholar 

  20. Yu H, Jiang Y, Lu Y, Li X, Zhao H, Ji Y, Wang M (2019) Quartz fiber reinforced Al2O3–SiO2 aerogel composite with highly-thermal stability by ambient pressure drying. J Non Cryst Solids 505:79–86

    Article  CAS  Google Scholar 

  21. Li H, Chen Y, Wang P, Xu B, Ma Y, Wen W, Yang Y, Fang D (2018) Porous carbon-bonded carbon fiber composites impregnated with SiO2–Al2O3 aerogel with enhanced thermal insulation and mechanical properties. Ceram Int 44:3484–3487

    Article  CAS  Google Scholar 

  22. Almeida CMR, Ghica ME, Ramalho AL, Durães L (2021) Silica-based aerogel composites reinforced with different aramid fibres for thermal insulation in Space environments. J Mater Sci 56:13604–13619

    Article  CAS  Google Scholar 

  23. Ghica ME, Almeida CMR, Fonseca M, Portugal A, Durães L (2020) Optimization of polyamide pulp-reinforced silica aerogel composites for thermal protection systems. Polymers 12:1278

    Article  CAS  Google Scholar 

  24. Corne V, Sarotti AM, Ramirez de Arellano C, Spanevello RA, Suarez AG (2016) Experimental and theoretical insights in the alkene-arene intramolecular π-stacking interaction. Beilstein J Org Chem 12:1616–1623

    Article  CAS  Google Scholar 

  25. Patnaik P (2002), Handbook of inorganic chemicals, McGraw-Hill Companies, Inc

  26. Wu X, Shao G, Cui S, Wang L, Shen X (2016) Synthesis of a novel Al2O3–SiO2 composite aerogel with high specific surface area at elevated temperatures using inexpensive inorganic salt of aluminum. Ceram Int 42:874–882

    Article  CAS  Google Scholar 

  27. Wu X, Shao G, Shen X, Cui S, Wang L (2016) Novel Al2O3–SiO2 composite aerogels with high specific surface area at elevated temperatures with different alumina/silica molar ratios prepared by a non-alkoxide sol–gel method. RSC Adv 6:5611–5620

    Article  CAS  Google Scholar 

  28. Ji X, Zhou Q, Qiu G, Peng B, Guo M, Zhang M (2017) Synthesis of an alumina enriched Al2O3–SiO2 aerogel: reinforcement and ambient pressure drying. J Non Cryst Solids 471:160–168

    Article  CAS  Google Scholar 

  29. Chen H, Sui X, Zhou C, Wang C, Liu F (2016) Preparation and characterization of monolithic Al2O3–SiO2 aerogel. J Ceram Soc Jpn 124:442–447

    Article  CAS  Google Scholar 

  30. Durães L, Oliveira O, Benedini L, Costa BFO, Matos, Beja A, Portugal A (2011) Sol-gel synthesis of iron (III) oxyhydroxide nanostructured monoliths using Fe(NO3)3 9H2O/CH3CH2OH/NH4OH ternary system. J Phys Chem Solids 72:678–684

    Article  Google Scholar 

  31. Brinker CJ, Scherer GW (1990) Sol-gel science: the physics and chemistry of sol-gel processing, Academic Press, Inc

  32. Levy D, Zayat M (2015) The Sol-Gel handbook, 3 Volume set: synthesis, characterization, and applications (Vol. 2), John Wiley & Sons

  33. Torres R, Vareda JP, Lamy-Mendes A, Durães L (2019) Effect of different silylation agents on the properties of ambient pressure dried and supercritically dried vinyl-modified silica aerogels. J Supercrit Fluids 147:81–89

    Article  CAS  Google Scholar 

  34. Al-Oweini R, El-Rassy H (2009) Synthesis and characterization by FTIR spectroscopy of silica aerogels prepared using several Si(OR)4 and R”Si(OR’)3 precursors. J Mol Struct 919:140–145

    Article  CAS  Google Scholar 

  35. Mukherjee M, Kumar S, Bose S, Das CK, Kharitonov AP (2008) Study on the mechanical, rheological, and morphological properties of short Kevlar™ fiber/s-PS composites. Polym-Plast Technol Eng 47(6):623–629

    Article  CAS  Google Scholar 

  36. He F, He X-D, Li Y (2007) Synthesis and structural characterization of SiO2–Al2O3 xerogels. Key Eng Mater 336-338:2286–2289

    Article  CAS  Google Scholar 

  37. Djošic MS, Miškovic-Stankovic VB, Janackovic DJT, Kačarevic-Popovic ZM, Petrovic RD (2006) Electrophoretic deposition and characterization of boehmite coatings on titanium substrates. Colloids Surf A Physicochem Eng Asp 274:185–191

    Article  Google Scholar 

  38. Wu X, Ding J, Kong Y, Sun Z, Shao G, Li B et al. (2018) Synthesis of a novel three-dimensional Na2SO4@SiO2@Al2O3–SiO2 phase change material doped aerogel composite with high thermal resistance and latent heat. Ceram Int 44(17):21855–21865

    Article  CAS  Google Scholar 

  39. Yoshinaga I, Yamada N, Katayama S (2005) Effect of inorganic components on thermal stability of methylsiloxane-based inorganic/organic hybrids. J Sol-Gel Sci Technol 35:21–26

    Article  CAS  Google Scholar 

  40. Hou X, Zhang R, Fang D (2017) Novel whisker Al2O3–SiO2 aerogel composites with ultra-low thermal conductivity. Ceram Int 43:9547–9551

    Article  CAS  Google Scholar 

  41. Yang G, Jiang Y, Feng J, Zhang S, Feng J (2017) Synthesis of fibre reinforced Al2O3–SiO2 aerogel composite with high density uniformity via a facile high-pressure impregnation approach. Proc Appl Ceram 11(3):185–190

    Article  CAS  Google Scholar 

  42. Zhang RB, Hou XB, Ye CS, Wang BL (2017) Enhanced mechanical and thermal properties of anisotropic fibrous porous mullite-zirconia composites produced using sol-gel impregnation. J Alloy Compd 699:511–516

    Article  CAS  Google Scholar 

Download references

Funding

This work was developed under the project AeroXTreme (CENTRO-01-0145-FEDER-029533)—High-performance silica aerogel nanocomposites for insulation under extreme temperature Space environments, co-funded by Foundation for Science and Technology (FCT) and by the European Regional Development Fund (ERDF), through Centro 2020 — Regional Operational Program of the Centre of Portugal. This work was also supported by national funds from FCT — Fundação para a Ciência e a Tecnologia, I.P., within the projects UIDB/EQU/00102/2020, UIDP/EQU/00102/2020, UIDB/04564/2020 and UIDP/04564/2020. Access to TAIL-UC facility funded under QREN-Mais Centro Project No. ICT_2009_02_012_1890 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mariana E. Ghica or Luisa Durães.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghica, M.E., Almeida, C.M.R., Rebelo, L.S.D. et al. Novel Kevlar® pulp-reinforced alumina-silica aerogel composites for thermal insulation at high temperature. J Sol-Gel Sci Technol 101, 87–102 (2022). https://doi.org/10.1007/s10971-021-05692-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05692-x

Keywords

Navigation