Skip to main content
Log in

Sol–gel synthesis of manganese-doped ceria from acetylacetonate precursors

  • Original Paper: Sol–gel and hybrid materials for catalytic, photoelectrochemical and sensor applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Pure and manganese-doped ceria nanopowders were prepared by the sol–gel method using cerium acetylacetonate hydrate and manganese acetylacetonate as precursors, while methanol and ethylene glycol were used as a double solvent. The prepared materials have been characterized by X-ray diffraction, Fourier transformed infrared spectroscopy, differential thermal and thermogravimetric analysis, scanning electron microscope, atomic force microscope, and N2 adsorption/desorption isotherms. In the course of synthesis and aging, hydrolysis of the precursors and gel formation were achieved. The process was more advanced in the doped samples. Grain growth kinetics pointed out that manganese inhibits the grain growth rate of ceria. On the basis of thermal evolution characterization 500 °C and 2 h were selected as thermal treatment parameters. Pure ceria was the only crystal phase obtained, while the decrease of lattice constant a revealed the entrance of Mn in the crystal lattice of ceria. Doped samples displayed smaller crystallite sizes and greater specific surface areas in comparison with pure sample. The catalytic efficiency of the prepared samples was tested for toluene oxidation and it was established that doping with manganese improves the catalytic efficiency of ceria.

Highlights

  • Manganese doped ceria nanopowders were prepared from acetylacetonate precursors.

  • Double solvents (methanol and ethylene glycol) have to be used.

  • Manganese inhibits the grain growth rate of ceria.

  • Doped samples exhibit smaller crystallite sizes and greater specific surface areas.

  • Doping with manganese improves the catalytic efficiency of ceria for toluene oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data and material are available upon request.

References

  1. Yang J, Lukashuk L, Li H, Fottinger K, Rupprechter G, Schubert U (2014) High surface area ceria for CO oxidation preparedfrom cerium t-butoxide by combined sol–gel and solvothermal processing. Catal Lett 144:403–412

    CAS  Google Scholar 

  2. Liu X, Zhou K, Wang L, Wang B, Li Y (2009) Oxygen vacancy clusters promoting reducibility and activity of ceria nanorods. J Am Chem Soc 131:3140–3141

    CAS  Google Scholar 

  3. Melchionna M, Fornasiero P (2014) The role of ceria-based nanostructured materials in energy applications. Mater Today 17:349–357

    CAS  Google Scholar 

  4. Zagaynov IV, Kutsev SV (2014) Formation of mesoporous nanocrystalline ceria from cerium nitrate, acetate or acetylacetonate. Appl Nanosci 4:339–345

    CAS  Google Scholar 

  5. Liu L, Shi J, Zhang X, Liu J (2015) Flower-like Mn-doped CeO2 microstructures: synthesis, characterizations, and catalytic properties. J Chem 254750:1–11

    Google Scholar 

  6. Kundakovic LJ, Flytzani-Stephanopoulos M (1998) Cu- and Ag-modified cerium oxide catalysts for methane oxidation. J Catal 179:203–221

    CAS  Google Scholar 

  7. Jiang H, Wang H, Kuang H, Li G, Zhang M (2014) Synthesis of MnOx–CeO2•NOx catalysts by polyvinylpyrrolidone assisted supercritical antisolvent precipitation. J Mater Res 29:2188–2197

    CAS  Google Scholar 

  8. Zou ZQ, Meng M, Zha YQ (2010) Surfactant-assisted synthesis, characterizations, and catalytic oxidation mechanisms of the mesoporous MnOx-CeO2 and Pd/MnOx-CeO2 catalysts used for CO and C3H8 oxidation. J Phys Chem C 114:468–477

    CAS  Google Scholar 

  9. Dhal A, Self W (2018) Cerium oxide nanoparticles: a brief review on their synthesis methods and biomedical applications. Antioxidants 7(97):1–13

    Google Scholar 

  10. Gavrilova NN, Nazarova VV (2018) Sol–gel synthesis and distinctive structural features of CexZr1 – xO2 solid solutions. Inorg Mater 54:831–839

    CAS  Google Scholar 

  11. Shaw LL, Shen C, Thomas EL (2010) Synthesis of gadolinia-doped ceria gels and powders from acetylacetonate precursors. J Sol-Gel Sci Technol 53:1–11

    CAS  Google Scholar 

  12. Mokrushin A, Simonenko E, Simonenko N, Bukunov K, Sevastyanov V, Kuznetsov N (2018) Gas-sensing properties of nanostructured CeO2-xZrO2 thin films obtained by the sol-gel method. J Alloy Compds 773:1023–1032

    Google Scholar 

  13. Torres-Huerta AM, Dominguez-Crespo MA, Brachetti-Sibaja SB, Dorantes-Rosales H, Hernandez-Perez MA, Lois-Correa JA (2010) Preparation of ZnO:CeO2–x thin films by AP-MOCVD: structural and optical properties. J Sol State Chem 183:2205–2217

    CAS  Google Scholar 

  14. Mahmoud WA, Al-Ghamdi AA, Al-Agel FA, Al-Arfaj E, Shokr FS, Al-Gahtany SA, Alshahrie A, Hafez M, Bronstein LM, Beall GW (2015) Structure and properties of the Mn doped CeO2 thin film grown on LaAlO3 (001) via a modified sol–gel spin-coating technique. J Alloy Compds 640:122–127

    CAS  Google Scholar 

  15. Venkataswamy P, Jampaiah D, Mukherjee D, Aniz CU, Reddy BM (2016) Mn-doped ceria solid solutions for CO Oxidation at lower temperatures. Catal Lett 146:2105–2118

    CAS  Google Scholar 

  16. Tiwari S, Khatun N, Shrivastava T, Kumar S, Liu SW, Biring S, Sen S (2018) Structural, optical and mechanical properties of sol-gel synthesized Mn-doped CeO2. Superlattices Microstructures 122:316–323

    CAS  Google Scholar 

  17. Shimizu Y, Murata T (1997) Sol–gel synthesis of perovskite-type lanthanum manganite thin films and fine powders using metal acetylacetonate and poly(vinyl alcohol). J Am Ceram Soc 80:2702–2704

    CAS  Google Scholar 

  18. Holland TJB, Redfern SAT (1997) Unit cell refinement from powder diffraction data: theuse of regression diagnostics. Miner Mag 61:65–77

    CAS  Google Scholar 

  19. Suryanarayana C, Norton MG (1998) X-ray diffraction: a practical approach. Plenum Press, New York

  20. Ni DW, Schmidt CG, Teocoli F, Kaiser A, Bøhm Andersen K, Ramousse S, Esposito V (2013) Densification and grain growth during sintering of porous Ce0.9Gd0.1O1.95 tape cast layers: a comprehensive study on heuristic methods. J Eur Ceram Soc 33:2529–2537

    CAS  Google Scholar 

  21. Schneider CA, Rasband WS, Eliceiri KW(2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675. https://doi.org/10.1038/nmeth.2089

    Article  CAS  Google Scholar 

  22. Kurajica S, Mužina K, Dražić G, Matijašić G, Duplančić M, Mandić V, Župančić M, Munda IK (2020) A comparative study of hydrothermally derived Mn, Fe, Co, Ni, Cu and Zn doped ceria nanocatalysts. Mater Chem Phys 244(12689):1–9

    Google Scholar 

  23. Kurajica S (2019) A brief review on the use of chelation agents in sol-gel synthesis with emphasis on β-diketones and β-ketoesters. Chem Biochem Eng Q 33:295–301

    CAS  Google Scholar 

  24. Shen C, Shaw LL (2010) FTIR analysis of the hydrolysis rate in the sol–gel formation of gadolinia-doped ceria with acetylacetonate precursors. J Sol-Gel Sci Technol 53:571–577

    CAS  Google Scholar 

  25. Kurajica S, Lozić I, Pantaler M (2014) Thermal decomposition of calcium(II) bis(acetylacetonate) n-hydrate. Polimeri 35:4–9

    CAS  Google Scholar 

  26. Vlčkova B, Strauch B, Horak M (1987) Measurement and interpretation of infrared and Raman spectra of vanadyl acetylacetonate. Collect Czechoslovak Chem Commun 52:686–695

    Google Scholar 

  27. Franco P, Martino M, Palma V, Scarpellini A, De Marco I (2018) Pt on SAS-CeO2 nanopowder as catalyst for the CO-WGS reaction. Int J Hydrog Energy 43:9965–9975

    Google Scholar 

  28. Vladut CM, Mihaiu S, Mocioiu OC, Atkinson I, Pandele-Cusu J, Anghel EM, Calderon-Moreno J, Zaharescu M (2019) Thermal studies of Mn2+-doped ZnO powders formation by sol–gel Method. J Therm Anal Calorim 135:2943–2951

    CAS  Google Scholar 

  29. Sakia T, Mahto V, Kumar A (2017) Quatntum dots: a new approach in thermodynamic inhibitor for the drilling of gas hydrate bearing formation. J Ind Eng Chem 52:89–98

    Google Scholar 

  30. Liu Y, Zhao X, Li J, Ma D, Han R (2012) Characterization of bio-char from pyrolysis of wheat straw and its evaluation on methylene blue adsorption. Desalination Water Treat 46:115–12

    CAS  Google Scholar 

  31. Garcia-Sanchez MF, Ortiz A, Santana G, Bizarro M, Pena J, Cruz-Gandarilla F, Aguilar-Frutis MA, Alonso JC (2010) Synthesis and characterization of nanostructured cerium dioxide thin films deposited by ultrasonic spray pyrolysis. J Am Ceram Soc 93:155–160

    CAS  Google Scholar 

  32. Zhang F, Raitano JM, Chen C, Hanson JC, Caliebe W, Khalid S, Chan S (2006) Phase stability in ceria-zirconia binary oxide (1-x)CeO2-xZrO2 nanoparticles: the effect of Ce3+ concentration and the redox envirnment. J Appl Phys 99:0843131–0843138

    Google Scholar 

  33. Kurajica S, Munda IK, Brleković F, Mužina K, Dražić G, Šipušić J, Mihaljević M (2020) Manganese-doped ceria nanoparticles grain growth kinetics. J Sol State Chem 291:121600

    CAS  Google Scholar 

  34. Li JG, Ikegami T, Wang Y, Mori T (2002) Nanocrystalline Ce1-xYxO2-x/2 (0≤x≤0.35) oxides via carbonate precipitation: Synthesis and characterization. J Solid State Chem 168:52–59

    CAS  Google Scholar 

  35. Liang H, Raitano JM, He G, Akey JA, Herman JP, Zhang L, Chan LW (2021) Aqueous co-precipitation of Pd-doped cerium oxide nanoparticles: chemistry, structure, and particle growth. J Mater Sci 47:299–307

    Google Scholar 

  36. Ivanov VK, Polezhaeva OS, Kopitsa GP, Fedorov PP, Pranzas K, Runov VV (2009) Specifics of high-temperature coarsening of ceria nanoparticles. Russ J Inorg Chem 54:1689–1696

    Google Scholar 

  37. Chen HY, Chang HL (2015) Development of low temperature three-way catalysts for future fuel efficient vehicles. Johns Matthey Technol Rev 59:64–67

    Google Scholar 

  38. Zhang P, Lu H, Zhou Y, Zhang L, Wu Z, Yang S, Shi H, Zhu Q, Chen Y, Dai S (2015) Mesoporous MnCeOx solid solutions for low temperature and selective oxidation of hydrocarbons. Nat Commun 6(8446):1–10

    Google Scholar 

  39. Naderi M (2015) Surface Area Brunauer-Emmett-Teller (BET). In: Tarleton S (ed), Progress in Filtration and Separation, Academic Press, p 585–608

  40. Sotomayor FJ, Cychosz KA, Thommes M (2018) Characterization of micro/mesoporous materials by physisorption: concepts and case studies. Acc Mater Surf Res 3:34–50

    Google Scholar 

  41. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87:1051–1069

    CAS  Google Scholar 

  42. Duplančić M, Kurajica S, Tomašić V, Minga I (2017) Catalytic oxidation of toluene on hydrothermally prepared ceria nanocrystals. Chem Biochem Eng Q 31:375–383

    Google Scholar 

  43. Venkataswamy P, Jampaiah D, Mukherjee D, Aniz CU, Reddy BM (2016) Mn-doped ceria solid solutions for CO oxidation at lower temperatures. Catal Lett 146:2105–2118

    CAS  Google Scholar 

  44. Ramana S, Rao BG, Venkataswamy P, Rangaswamy A, Reddy BM (2016) Nanostructured Mn-doped ceria solid solutions for efficient oxidation of vanillyl alcohol. J Mol Catal A Chem 415:113–121

    CAS  Google Scholar 

Download references

Acknowledgements

This work has been fully supported by Croatian Science Foundation under the project IP-01-2018-2963. The sustenance of the University of Zagreb is also appreciated.

Author contributions

Conceptualization, SK; methodology, SK, IKI, and VM; formal analysis and investigation, IKI, EEA, KM, VM, IP, and GM; writing—original draft preparation, SK, IKI; writing—review and editing, SK, IKI, and KM; visualization, SK, IKI, and VM; supervision, SK; project administration, SK; funding acquisition, SK. All authors have read and agreed to the published version of the paper.

Funding

Croatian Science Foundation, project IP-2018-01-2963, UIP-2019-02-2367, and PZS-2019-02-1555 PW-WALL in Research Cooperability Program of the Croatian Science Foundation funded by the European Union from the European Social Fund under the Operational Program Efficient Human Resources 2014-2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. K. Ivković.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurajica, S., Ivković, I.K., Mužina, K. et al. Sol–gel synthesis of manganese-doped ceria from acetylacetonate precursors. J Sol-Gel Sci Technol 101, 256–268 (2022). https://doi.org/10.1007/s10971-021-05689-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05689-6

Keywords

Navigation