Skip to main content
Log in

Impinging streams application in mass production of rare earth ions doped upconversion luminescence microparticles

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Known as one efficient upconversion luminescent material, Rare-earth ions doped natrium yttrium fluoride NaYF4:Yb/Re has broad application prospects. However, due to the limitation of the existing preparation methods, it is difficult to realize industrial production. In this paper, the upconversion luminescence microparticles, rare earth ions doped Natrium Yttrium Fluoride NaYF4:Yb/Er, were synthesized productively by impinging stream method. Synthesis conditions were optimized as EDTA: Ln to 0.5 and NaF: Ln to 6 (Ln represents the sum of moles of Y, Yb, and Er), reacting temperature and time to 50 °C and 3 h to obtain a high yield of 99.92% and particle with good monodispersity. To get strong upconversion luminescence, the effect of the calcination temperature and the amount of EDTA were investigated. The bright upconversion emissions by excited with laser radiation at 975 nm were found at 510–690 nm. The higher the calcination temperature, the stronger the luminescence and the strongest luminescence occurs when calcined at 600 °C. And the adding of EDTA will decrease the luminescence intensity. However, the sintering of particles at high temperatures and aggregation of particles without EDTA are unfavorable for the application of the products. Based on the above considerations, the optimal calcination temperature was determined at 450 °C, and the ratio of EDTA: Ln is preferred at 0.5. The impinging stream method to prepare upconversion material has the advantages of being simple in the process and equipment, high in output, low in investment, and convenient to be applied and popularized.

Highlights

  • Mass Production of up-conversion luminescence materials is illustrated.

  • NaYF4:Yb/Er microparticles were synthesized by the novel impinging stream method.

  • Products with high yield of 99.92% and good mono-dispersity could be obtained at optimal condition.

  • The hexagonal crystals were obtained by calcinations at 450 °C, and it can emit bright up-conversion emissions of at 510–690 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Rabouw FT, Prins PT, Villanueva-Delgado P, Castelijns M, Geitenbeek RG, Meijerink A (2018) Quenching pathways in NaYF4:Er3+,Yb3+ upconversion nanocrystals. Acs Nano 12(5):4812–4823. https://doi.org/10.1021/acsnano.8b01545

    Article  CAS  Google Scholar 

  2. Menyuk N, Dwight K, Pierce JW (1972) NaYF4: Yb,Er-an efficient upconversion phosphor. Appl Phys Lett 21(4):159–161. https://doi.org/10.1063/1.1654325

    Article  CAS  Google Scholar 

  3. Sommerdijk JL, Bril A, Jager AWD (1974) Two photon luminescence with ultraviolet excitation of trivalent praseodymium. J Lumin 8(4):341–343. https://doi.org/10.1016/0022-2313(74)90006-4

    Article  CAS  Google Scholar 

  4. Zhao F, Yin D (2017) Preparation of upconversion nanocrystals NaYF4:Yb/Tm with Hydr(solvo) thermal Methods. Nano Biomedicine Eng 9(2):107–111. https://doi.org/10.5101/nbe.v9i2.p107-111

    Article  CAS  Google Scholar 

  5. Sandrock T, Scheife H, Heumann E, Huber G (1997) High-power continuous-wave upconversion fiber laser at room temperature. Opt Lett 22(11):808–810. https://doi.org/10.1364/OL.22.000808

    Article  CAS  Google Scholar 

  6. Downing E, Hesselink L, Ralston J, Macfarlane R (1996) A three-color, solid-state, three-dimensional display. Science 273(5279):1185–1189. https://doi.org/10.1126/science.273.5279.1185

    Article  CAS  Google Scholar 

  7. Shionoya S, Yen WM, Yamamoto H (2006) Fundamentals of luminescence. Phosphor Handbook, Second Edition. https://doi.org/10.1201/9781420043686.ch1

  8. Rijke FM, Zijlmans H, Li S, Vail T, Raap A, Niedbala R, Tanke H (2001) Up-converting phosphor reporters for nucleic acid microarrays. Nat Biotechnol 19:273–276. https://doi.org/10.1038/85734

    Article  CAS  Google Scholar 

  9. Yi G, Lu H, Zhao S, Ge Y, Yang W, Chen D, Guo L-H (2004) Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4:Yb,Er infrared-to-visible up-conversion phosphors. Nano Lett 4(11):2191–2196. https://doi.org/10.1021/nl048680h

    Article  CAS  Google Scholar 

  10. Corstjens P, Li S, Zuiderwijk M, Kardos K, Abrams W, Niedbala RS, Tanke H (2005) Infrared up-converting phophors for bioassays. IEE Proc Nanobiotechnology 152(2):64–72. https://doi.org/10.1049/ip-nbt:20045014

    Article  CAS  Google Scholar 

  11. Bünzli J-CG (2010) Lanthanide luminescence for biomedical analyses and imaging. Chem Rev 110(5):2729–2755. https://doi.org/10.1021/cr900362e

    Article  CAS  Google Scholar 

  12. Yu J, Wang Y, He Y, Li H, Cheng Q, Li Y (2020) A novel strategy to obtain hollow NaBiF4:Yb3+/Er3+ upconversion nanospheres by one step coprecipitation. J Nanosci Nanotechnol 20(10):6257–6265. https://doi.org/10.1166/jnn.2020.18587

    Article  CAS  Google Scholar 

  13. Kostiv U, Engstova H, Krajnik B, Slouf M, Proks V, Podhorodecki A, Jezek P, Horak D (2020) Monodisperse core-shell NaYF4:Yb3+/Er3+@NaYF4:Nd3+-PEG-GGGRGDSGGGY-NH2 nanoparticles excitable at 808 and 980 nm: design, surface engineering, and application in life sciences. Front Chem 8:497. https://doi.org/10.3389/fchem.2020.00497

    Article  CAS  Google Scholar 

  14. Cai G, Wang K, Xiong Q, Viana B, Xiong J (2020) Enhanced luminescence of Mo3+-doped beta-NaREF4 nanowires prepared via coprecipitation-solvothermal ion-exchange method and their application in upconversion polyurethane composite. J Mater Sci-Mater Electron 31(11):8359–8369. https://doi.org/10.1007/s10854-020-03371-1

    Article  CAS  Google Scholar 

  15. Nannuri SH, Kulkarni SD, Subash CK, Chidangil S, George SD (2019) Post annealing induced manipulation of phase and upconversion luminescence of Cr3+ doped NaYF4:Yb,Er crystals. RSC Adv 9(17):9364–9372. https://doi.org/10.1039/c9ra00115h

    Article  CAS  Google Scholar 

  16. Qin Z, Du S, Luo Y, Liao Z, Zuo F, Luo J, Liu D (2016) Hydrothermal synthesis of superparamagnetic and red luminescent bifunctional Fe3O4@Mn2+-doped NaYF4:Yb/Er core@shell monodisperse nanoparticles and their subsequent ligand exchange in water. Appl Surf Sci 378:174–180. https://doi.org/10.1016/j.apsusc.2016.03.219

    Article  CAS  Google Scholar 

  17. Liang Y, Noh HM, Xue J, Choi H, Park SH, Choi BC, Kim JH, Jeong JH (2017) High quality colloidal GdVO4:Yb, Er upconversion nanoparticles synthesized via a protected calcination process for versatile applications. Mater Des 130:190–196. https://doi.org/10.1016/j.matdes.2017.05.058

    Article  CAS  Google Scholar 

  18. Zhao B, Li Y (2018) Facile synthesis of near-infrared-excited NaYF4:Yb3+, Tm3+ nanoparticles for label-free detection of dopamine in biological fluids. Talanta 179:478–484. https://doi.org/10.1016/j.talanta.2017.11.042

    Article  CAS  Google Scholar 

  19. Zhang X-Y, Ma Y-X, Xu C-L, Ding J, Quan H-J, Hou Z-Y, Shi G, Qin N, Gao D-L (2018) Spectroscopic exploration of upconversion luminescence behavior of rare earth-doped single-particle micro/nanocrystals. Acta Phys Sin 67(18):183301. https://doi.org/10.7498/aps.67.20172191

    Article  CAS  Google Scholar 

  20. Boyer J-C, Cuccia LA, Capobianco JA (2007) Synthesis of colloidal upconverting NaYF4:Er3+/Yb3+ and Tm3+/Yb3+ monodisperse nanocrystals. Nano Lett 7(3):847–852. https://doi.org/10.1021/nl070235

    Article  CAS  Google Scholar 

  21. Vetrone F, Naccache R, Mahalingam V, Morgan CG, Capobianco JA, Vetrone F, Naccache R, Mahalingam V, Morgan CG, Capobianco JA (2009) The Active-core/active-shell approach: a strategy to enhance the upconversion luminescence in lanthanide-doped nanoparticles. Adv Funct Mater 19(18):2924–2929. https://doi.org/10.1002/adfm.200900234

    Article  CAS  Google Scholar 

  22. Raju GSR, Pavitra E, Bharat LK, Rao GM, Jeon T-J, Huh YS, Han Y-K (2018) Enhanced green upconversion luminescence properties of Er3+/Yb3+ co-doped strontium gadolinium silicate oxyapatite phosphor. Ceram Int 44(12):13852–13857. https://doi.org/10.1016/j.ceramint.2018.04.231

    Article  CAS  Google Scholar 

  23. Kumar V, Rani P, Singh D, Chawla S (2014) Efficient multiphoton upconversion and synthesis route dependent emission tunability in GdPO4:Ho3+, Yb3+ nanocrystals. RSC Adv 4(68):36101–36105. https://doi.org/10.1039/c4ra04795h

    Article  CAS  Google Scholar 

  24. Jeyanthi CE, Siddheswaran R, Medlin R, Chinnu MK, Jayavel R, Rajarajan K (2014) Electrochemical and structural analysis of the RE3+:CeO2 nanopowders from combustion synthesis. J Alloy Compd 614:118–125. https://doi.org/10.1016/j.jallcom.2014.05.208

    Article  CAS  Google Scholar 

  25. Meng Q, Chen B, Zhong H, Sun J, Cheng L, Zhang X, Chen M (2010) Effect of surface-absorbing chemical groups on the luminescence of Yb3+/Er3+ co-doped nanosized Y2O3. J Nanosci Nanotechnol 10(3):1895–1899. https://doi.org/10.1166/jnn.2010.2052

    Article  CAS  Google Scholar 

  26. Guo T, Ruan B, Liu Z, Jamal MA, Wen L, Chen J (2017) Numerical and experimental investigations of liquid mixing in two-stage micro-impinging stream reactors. Chin J Chem Eng 25(4):391–400. https://doi.org/10.1016/j.cjche.2016.11.015

    Article  CAS  Google Scholar 

  27. Zhang Q-C, Tian L-L, Wu Y-C, Li Y, Wen L-X, Wang S (2019) Fast coprecipitation of nickel-cobalt oxide in a micro-impinging stream reactor for the construction of high-performance asymmetric supercapacitors. J Alloy Compd 792:314–327. https://doi.org/10.1016/j.jallcom.2019.04.032

    Article  CAS  Google Scholar 

  28. Li Y, Ye H, Liu H (2012) Preparation of Y3Al5O12 phosphor by impinging streams homogeneous precipitation-molten salt assisted method. Asian J Chem 24(10):4491–4494

    CAS  Google Scholar 

  29. Shen H, Liu Y, Song B (2016) Preparation and characterization of magnesium hydroxide nanoparticles in a novel impinging stream-rotating packed bed reactor. J Chem Eng Jpn 49(4):372–378. https://doi.org/10.1252/jcej.15we093

    Article  CAS  Google Scholar 

  30. Jafarikojour M, Mohammadi MM, Sohrabi M, Royaee SJ (2015) Evaluation and modeling of a newly designed impinging stream photoreactor equipped with a TiO2 coated fiberglass cloth. RSC Adv 5(12):9019–9027. https://doi.org/10.1039/c4ra13670e

    Article  CAS  Google Scholar 

  31. Jiao W, Qin Y, Luo SL, Feng Z, Liu Y (2017) Continuous preparation of nanoscale zero-valent iron using impinging stream-rotating packed bed reactor and their application in reduction of nitrobenzene. J Nanopart Res 19(2):52. https://doi.org/10.1007/s11051-017-3758-1

    Article  CAS  Google Scholar 

  32. Royaee SJ, Sohrabi M, Shafeghat A (2014) Wastewater treatment using photo-impinging streams cyclone reactor: computational fluid dynamics and kinetics modeling. Korean J Chem Eng 31(2):240–247. https://doi.org/10.1007/s11814-013-0191-8

    Article  CAS  Google Scholar 

  33. Liu Z, Guo L, Huang T, Wen L, Chen J (2014) Experimental and CFD studies on the intensified micromixing performance of micro-impinging stream reactors built from commercial T-junctions. Chem Eng Sci 119:124–133. https://doi.org/10.1016/j.ces.2014.07.061

    Article  CAS  Google Scholar 

  34. Jafarikojour M, Dabir B, Sohrabi M, Royaee SJ (2019) Comparison between the performance of an immobilized impinging jet stream reactor and a slurry impinging jet stream reactor for photocatalytic phenol degradation. J Dispers Sci Technol 40(3):338–345. https://doi.org/10.1080/01932691.2018.1468264

    Article  CAS  Google Scholar 

  35. Fatourehchi N, Sohrabi M, Dabir B, Royaee SJ, Malayeri AH (2014) Application of a novel type impinging streams reactor in solid-liquid enzyme reactions and modeling of residence time distribution using GDB model. Enzym Microb Technol 55:14–20. https://doi.org/10.1016/j.enzmictec.2013.11.006

    Article  CAS  Google Scholar 

  36. Liang F, Liu Z, Liu Y (2020) Synthesis of MnO2/PPy nanocomposites by novel emulsifying device and its electrochemical performances. J Sol-Gel Sci Technol 95(2):289–299. https://doi.org/10.1007/s10971-020-05334-8

    Article  CAS  Google Scholar 

  37. Zhou C, Wang Y, Du L, Yao H (2017) Preparation of highly dispersed SiO2 nanoparticles using continuous gasbased impinging streams. Chem Eng J 327:734–742. https://doi.org/10.1016/j.cej.2017.06.133

    Article  CAS  Google Scholar 

  38. Chang H, Xie J, Zhao B, Liu B, Xu S, Ren N, Xie X, Huang L, Huang W (2015) Rare earth ion-doped upconversion nanocrystals: synthesis and surface modification. Nanomaterials 5(1):1–25. https://doi.org/10.3390/nano5010001

    Article  CAS  Google Scholar 

  39. Kale V, Lastusaari M, Holsa J, Soukka T (2015) Intense UV upconversion through highly sensitized NaRF4:Tm (R:Y,Yb) crystals. RSC Adv 5(45):35858–35865. https://doi.org/10.1039/c5ra01613d

    Article  CAS  Google Scholar 

  40. Huang X (2016) Tuning the size and upconversion luminescence of NaYbF4:Er3+/Tm3+ nanoparticles through Y3+ or Gd3+ doping. Optical Mater Express 6(7):2165–2176. https://doi.org/10.1364/ome.6.002165

    Article  CAS  Google Scholar 

  41. Kostiv U, Kotelnikov I, Proks V, Slouf M, Kucka J, Engstova H, Jezek P, Horak D (2016) RGDS- and TAT-conjugated upconversion of NaYF4:Yb3+/Er3+&SiO2 nanoparticles: in vitro human epithelioid cervix carcinoma cellular uptake, imaging, and targeting. Acs Appl Mater Interfaces 8(31):20422–20431. https://doi.org/10.1021/acsami.6b07291

    Article  CAS  Google Scholar 

  42. Kostiv U, Rajsiglova L, Luptakova D, Pluhacek T, Vannucci L, Havlicek V, Engstova H, Jirak D, Slouf M, Makovicky P, Sedlacek R, Horak D (2017) Biodistribution of upconversion/magnetic silica-coated NaGdF4:Yb3+/Er3+ nanoparticles in mouse models. RSC Adv 7(73):45997–46006. https://doi.org/10.1039/c7ra08712h

    Article  CAS  Google Scholar 

  43. Hu Y, Wang D, Li Z, Lu J, Zheng J (2010) Upconversion luminescence properties of Er3+-Yb3+-codoped titania-zirconia composites. J Am Ceram Soc 93(2):374–377. https://doi.org/10.1111/j.1551-2916.2009.03439.x

    Article  CAS  Google Scholar 

  44. Yao L-L, Luo L, Dong G-S, Wang Y-H (2013) Crystal structure and upconversion emission of Yb3+/Er3+-co-doped NaYF4 nanocrystals. Spectrosc Spectr Anal 33(11):2917–2920. https://doi.org/10.3964/j.issn.1000-0593(2013)11-2917-04

    Article  CAS  Google Scholar 

  45. Gao W, Dong J, Wang RB, Wang ZJ, Zheng HR (2016) Upconversion flourescence characteristics of Er3+/Yb3+ codoped NaYF4 and LiYF4 microcrystals. Acta Phys Sin 65(8):084205. https://doi.org/10.7498/aps.65.084205

    Article  CAS  Google Scholar 

  46. Huang QM, Yu H, Zhang XQ, Cao WB, Yu JC (2016) Upconversion performance enhancement of NaYF4:Yb/Tm by codoping Hf4+ as energy migrator. Acta Chim Sin 74(2):191–198. https://doi.org/10.6023/a15040257

    Article  CAS  Google Scholar 

  47. Li DD, Shao QY, Dong Y, Jiang JQ (2014) Anomalous temperature-dependent upconversion luminescence of small-sized NaYF4:Yb3+, Er3+ nanoparticles. J Phys Chem C 118(39):22807–22813. https://doi.org/10.1021/jp507804h

    Article  CAS  Google Scholar 

Download references

Funding

This research work was supported by the National Natural Science Foundation of China (51502210), the fund of Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science (CHCL21002), the Innovation Project of Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education (LCX2021001), the 15th and 16th President’s Foundation of Wuhan Institute of Technology (XZJJ2020002, XZJJ2021091), the 2020 National College Students Innovation and Entrepreneurship Training Program (202010490002).

Author information

Authors and Affiliations

Authors

Contributions

LZ prepared a new batch of samples and characterized the samples by EDS and XRD. SW recorded the PL spectra of the new samples prepared by LZ and put forward many advices on the discussion of PL spectra.

Corresponding authors

Correspondence to Caili Xu or Renliang Lyu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Zhao, L., Wang, S. et al. Impinging streams application in mass production of rare earth ions doped upconversion luminescence microparticles. J Sol-Gel Sci Technol 101, 215–226 (2022). https://doi.org/10.1007/s10971-021-05675-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05675-y

Keywords

Navigation