Skip to main content
Log in

Synthesis, structural characteristics, and thermal expansion behavior of zirconium phosphate ceramics with d-transition metals

  • Original Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The series M0.5(1+x)FexZr2−x(PO4)3 (M—Ni, Cu, Mn) with Sc2(WO4)3-related structure (SW) were prepared using Pechini technique and characterized by powder X-ray diffraction analysis, SEM, EDX, IR, and Mössbauer spectroscopy. The concentration and temperature limits of solid solution formation were determined, lattice parameters were calculated, and their dependencies on the phosphate’s composition were studied. The crystal structure of the phosphate Mn0.65Fe0.3Zr1.7(PO4)3 (x = 0.3) was refined by the Rietveld method basing on the powder X-ray diffraction data. The compound crystallizes in monoclinic symmetry (space group P21/n) with lattice parameters: a = 8.7941(12), b = 8.9379(16), c = 12.4353(21) Å, β = 90.126(24)°, V = 977.49(27) Å3. Thermal expansion coefficients of the ceramics Cu0.5(1+x)FexZr2−x(PO4)3 were determined. The volume expansion coefficients of the compounds vary in the range (4.4–10.8)∙10−5 K −1.

Highlights

  • New zirconium phosphate ceramics M0.5(1+x)FexZr2-x(PO4)3(M – Ni, Cu, Mn; structural type SW) were synthesized, the formation regions of the solid solutions were revealed.

  • Temperature stability of the phosphates was determined.

  • Crystal structure of the triple phosphate Mn0.65Fe0.3Zr1.7(PO4)3 was refined by Rietveld method.

  • Thermal expansion behavior was studied by XRD, possible reasons were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wang Y, Zhou Y, Song Y, Yang L, Liu F (2018) Mechanical and thermal expansion studies on Ca0.5Sr0.5Zr4−xTixP6O24 ceramics. Ceram Int 44:16698–16702. https://doi.org/10.1016/j.ceramint.2018.06.097

    Article  CAS  Google Scholar 

  2. Pet’kov VI, Shipilov AS, Dmitrienko AS, Alekseev AA (2018) Characterization and controlling thermal expansion of materials with kosnarite and langbeinite-type structures. J Ind Eng Chem 57:236–243. https://doi.org/10.1016/j.jiec.2017.08.029

    Article  CAS  Google Scholar 

  3. Shi XW, Lian H, Yan XS, Qi R, Yao N, Li T (2016) Fabrication and properties of polyimide composites filled with zirconium tungsten phosphate of negative thermal expansion. Mater Chem Phys 179:72–79. https://doi.org/10.1016/j.matchemphys.2016.05.011

    Article  CAS  Google Scholar 

  4. Watanabe H, Tani J, Kido H, Mizuuchi K (2008) Thermal expansion and mechanical properties of pure magnesium containing zirconium tungsten phosphate particles with negative thermal expansion. Mater Sci Eng: A 494:291–298. https://doi.org/10.1016/j.msea.2008.04.037

    Article  CAS  Google Scholar 

  5. Tantri P, Ushadevi S, Ramasesha SK (2002) High temperature X-ray studies on barium and strontium zirconium phosphate based low thermal expansion materials. Mater Res Bull 37:1141–1147. https://doi.org/10.1016/S0025-5408(02)00734-1

    Article  Google Scholar 

  6. He S, Xu Y, Zhang B, Sun X, Chen Y, Jin Y (2018) Unique rhombus-like precursor for synthesis of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte with high ionic conductivity. Chem Eng J 345:83–491. https://doi.org/10.1016/j.cej.2018.03.151

    Article  CAS  Google Scholar 

  7. Qiu S, Wu X, Wang M, Lucero M, Wang Y, Wang J, Yang Z, Xu W, Wang Q, Gu M, Wen J, Huang Y, Xu ZJ, Feng Z (2019) NASICON–type Na3Fe2(PO4)3 as a low-cost and high-rate anode material for aqueous sodium-ion batteries. Nano Energy 64:103941. https://doi.org/10.1016/j.nanoen.2019.103941

    Article  CAS  Google Scholar 

  8. Liu Q, Yan H, Su YU, Shi S, Ye J (2014) Energy transfer studies of dye chromophores in modified zirconium phosphate framework. J Lumin 152:238–240. https://doi.org/10.1016/j.jlumin.2014.01.077

    Article  CAS  Google Scholar 

  9. Kanunov AE, Gorshkova EN, Orlova AI, Shushunov AN, Mikheeva ER, Pleskova SN (2013) Elaboration of luminescent materials on the basis of phosphates of NaZr2(PO4)3-type for research of living systems. Phys Procedia 44:224–230. https://doi.org/10.1016/j.phpro.2013.04.027

    Article  CAS  Google Scholar 

  10. Zhang Z, Liu L, Zhang X, Zhang J, Zhang W, Wang D (2015) Preparation and investigation of CaZr4(PO4)6:Dy3+ single-phase full-color phosphor. Spectrochim Acta A 137:1–6. https://doi.org/10.1016/j.saa.2014.07.052

    Article  CAS  Google Scholar 

  11. Ermilova MM, Sukhanov MV, Borisov RS, Orekhova NV, Pet’kov VI, Novikova SA, Il’in AB, Yaroslavtsev AB (2012) Synthesis of the new framework phosphates and their catalytic activity in ethanol conversion into hydrocarbons. Catal Today 193:37–41. https://doi.org/10.1016/j.cattod.2012.02.029

    Article  CAS  Google Scholar 

  12. Shchelokov I, Asabina E, Sukhanov M, Ermilova M, Orekhova N, Pet’kov V, Tereshchenko G (2008) Synthesis, surface properties and catalytic activity of phosphates Cu0.5(1+y)FeyZr2–y(PO4)3 in methanol conversion. Solid State Sci 10:513–517. https://doi.org/10.1016/j.solidstatesciences.2007.12.005

    Article  CAS  Google Scholar 

  13. Zhou M, Jiang X, Xia M, Huang H, Lin Z, Yao J, Wu Y(2016) A new congruent-melting double phosphate PbCd(PO3)4 with photocatalytic activity J Alloy Compd 689:599–605. https://doi.org/10.1016/j.jallcom.2016.08.011

    Article  CAS  Google Scholar 

  14. Pavlova SN, Sadykov VA, Zabolotnaya GV, Kochubey DI, Maximovskaya RI, Zaikovskii VI, Kriventsov VV, Tsybulya SV, Burgina EB, Volodin AM, Chaikina MV, Kuznetsova NN, Lunin VV, Agrawal D, Roy R (2000) The novel acid catalysts-framework zirconium phosphates: the bulk and surface structure. J Mol Catal A: Chem 158:319–323. https://doi.org/10.1016/S1381-1169(00)00098-4

    Article  CAS  Google Scholar 

  15. Pet’kov V, Asabina E, Loshkarev V, Sukhanov M (2016) Systematic investigation of the strontium zirconium phosphate ceramic form for nuclear waste immobilization. J Nucl Mater 471:122–128. https://doi.org/10.1016/j.jnucmat.2016.01.016

    Article  CAS  Google Scholar 

  16. Chakraborty N, Basu D, Fischer W (2005) Thermal expansion of Ca1–xSrxZr4(PO4)6 ceramics. J Eur Ceram Soc 25:1885–1893. https://doi.org/10.1016/j.jeurceramsoc.2004.06.019

    Article  CAS  Google Scholar 

  17. Asabina E, Pet’kov V, Mayorov P, Lavrenov D, Schelokov I, Kovalsky A (2017) Synthesis, structure and thermal expansion of the phosphates M0.5+xM′xZr2–x(PO4)3 (M, M′–metals in oxidation state +2). Pure Appl Chem 89:523–534. https://doi.org/10.1515/pac-2016-1005

    Article  CAS  Google Scholar 

  18. Toh WD, Xu B, Jia J, Chin CS, Chiew J, Gao Z (2017) Lithium iron phosphate (LiFePO4) battery power system for deepwater emergency operation. Energy Procedia 143:348–353. https://doi.org/10.1016/j.egypro.2017.12.695

    Article  CAS  Google Scholar 

  19. La Parola V, Liveri VT, Todaro L, Lombardo D, Bauer EM, Dell’Era A, Longo A, Caschera D, de Caro T, Grazia Toro R, Calandra P (2018) Iron and lithium–iron alkyl phosphates as nanostructured material for rechargeable batteries. Mater Lett 220:58–61. https://doi.org/10.1016/j.matlet.2018.02.112

    Article  CAS  Google Scholar 

  20. Marques CF, Olhero S, Abrantes JCC, Marote A, Ferreira S, Vieira SI, Ferreira JMF (2017) Biocompatibility and antimicrobial activity of biphasic calcium phosphate powders doped with metal ions for regenerative medicine. Ceram Int 43:15719–15728. https://doi.org/10.1016/j.ceramint.2017.08.133

    Article  CAS  Google Scholar 

  21. Marques CF, Perera FH, Marote A, Ferreira S, Vieira SI, Olhero S, Miranda P, Ferreira JMF (2017) Biphasic calcium phosphate scaffolds fabricated by direct write assembly: mechanical, anti-microbial and osteoblastic properties. J Eur Ceram Soc 37:359–368. https://doi.org/10.1016/j.jeurceramsoc.2016.08.018

    Article  CAS  Google Scholar 

  22. Gadamsetti S, Mathangi N, Hussain S, Kumar Velisoju V, Chary KVR (2018) Vapor phase esterification of levulinic acid catalyzed by γ-Al2O3 supported molybdenum phosphate catalysts. Mol Catal 451:192–199. https://doi.org/10.1016/j.mcat.2018.01.011

    Article  CAS  Google Scholar 

  23. Song X, Sun Q, Gao L, Chen W, Wu Y, Li Y, Mao L, Yang J–H (2018) Nickel phosphate as advanced promising electrochemical catalyst for the electro-oxidation of methanol. Int J Hydrog Energy 43:12091–12102. https://doi.org/10.1016/j.ijhydene.2018.04.165

    Article  CAS  Google Scholar 

  24. Pet’kov VI, Sukhanov MV, Ermilova MM, Orekhova NV, Tereshchenko GF (2010) Development and synthesis of bulk and membrane catalysts based on framework phosphates and molybdates. Russ J Appl Chem 83:1731–1741. https://doi.org/10.1134/S1070427210100022

    Article  CAS  Google Scholar 

  25. Shahbazi–Alavi H, Nazemzadeh SH, Ziarati A, Safaei–Ghomi J (2018) Nano-NiZr4(PO4)6 as a superior catalyst for the synthesis of propargylamines under ultrasound irradiation. Z Naturforsch B: Chem Sci 73:185–189. https://doi.org/10.1515/znb-2017-0178

    Article  CAS  Google Scholar 

  26. Pet’kov VI, Kurazhkovskaya VS, Orlova AI, Spiridonova ML (2002) Synthesis and crystal chemical characteristics of the structure of M0.5Zr2(PO4)3 phosphates. Crystallogr Rep 47:736–743. https://doi.org/10.1134/1.1509386

    Article  CAS  Google Scholar 

  27. Asabina EA, Glukhova IO, Pet’kov VI, Borovikova EYU, Koval’skii AM (2017) Synthesis and structure of phosphates M0.5Ti2(PO4)3. Rus J Gen Chem 87:684–689. https://doi.org/10.1134/S1070363217040041

    Article  CAS  Google Scholar 

  28. Hagman LO, Kierkegaard P (1968) The crystal structure of NaM2IV(PO4)3; MeIV = Ge, Ti, Zr. Acta Chem Scand 22:1822–1832. https://doi.org/10.3891/acta.chem.scand.22-1822

    Article  CAS  Google Scholar 

  29. Oikonomou P, Dedeloudis CH, Stournaras CJ, Ftikos CH (2007) [NZP]: a new family of ceramics with low thermal expansion and tunable properties. J Eur Ceram Soc 27:1253–1258. https://doi.org/10.1016/j.jeurceramsoc.2006.04.021

    Article  CAS  Google Scholar 

  30. Bortsova YEV, Koryttseva AK, Orlova AI, Kurazhkovskaya VS, Kаzantsev GN, Samoilov SG, Kаruchkina YEA (2009) New NZP–phosphates B0.5FeTa(PO4)3 (where B—Ca, Sr, Ba): Synthesis, crystallochemical investigation and thermal expansion. J Alloy Compds 475:74–78. https://doi.org/10.1016/j.jallcom.2008.07.062

    Article  CAS  Google Scholar 

  31. Oota T, Yamai I (1986) Thermal expansion behavior of NaZr2(PO4)3 type compounds. J Am Ceram Soc 69:1–6. https://doi.org/10.1111/j.1151-2916.1986.tb04682.x

    Article  CAS  Google Scholar 

  32. Zhu Y, Kanamori K, Moitra N, Kadono K, Ohi S, Shimobayashi N, Nakanishi K (2016) Metal zirconium phosphate macroporous monoliths: versatile synthesis, thermal expansion and mechanical properties. Microporous Mesoporous Mater 225:122–127. https://doi.org/10.1016/j.micromeso.2015.12.002

    Article  CAS  Google Scholar 

  33. Tereshchenko GF, Orekhova NV, Ermilova MM, Malygin AA, Orlova AI (2006) Nanostructured phosphorus–oxide-containing composite membrane catalysts. Catal Today 118:85–89. https://doi.org/10.1016/j.cattod.2005.12.014

    Article  CAS  Google Scholar 

  34. Pylinina AI, Chernyshova MN, Lobanov NN, Kasatkin EM, Savilov SV (2017) Dehydration of isobutyl alcohol on cesium-cobalt-containing NASICON catalysts. Theor Exp Chem 53:47–52. https://doi.org/10.1007/s11237-017-9500-3

    Article  CAS  Google Scholar 

  35. Pylinina AI, Mikhalenko II (2011) Dehydrogenation of butyl alcohols on NASICON-type solid electrolytes of Na1–2xCuxZr2(PO4)3 composition. Russ J Phys Chem 85:2109–2114. https://doi.org/10.1134/S0036024411110252

    Article  CAS  Google Scholar 

  36. Serghini A, Brochu R, Ziyad M, Loukah M, Védrine JC (1991) Behaviour of copper–zirconium nasicon-type phosphate, CuIZr2(PO4)3, in the decomposition of isopropyl alcohol. J Chem Soc, Faraday Trans 87:2487–2491. https://doi.org/10.1039/FT9918702487

    Article  CAS  Google Scholar 

  37. Serghini A, Brochu R, Ziyad M, Védrine JC (1992) Synthesis, characterization and catalytic behaviour of Cu0.5M2(PO4)3 (M = Zr, Sn, Ti). J Alloy Compd 188:60–64. https://doi.org/10.1016/0925-8388(92)90643-N

    Article  CAS  Google Scholar 

  38. Glukhova IO, Asabina EA, Pet’kov VI, Mironova EYU, Zhilyaeva NA, Kovalyskii AM, Yaroslavtsev AB (2020) Zirconium d-transition metal phosphates as catalysts for selective dehydration of methanol to dimethyl ether. Inorg Mater 56:395–401. https://doi.org/10.1134/S0020168520040056

    Article  Google Scholar 

  39. Matraszek A, Godlewska P, Macalik L, Hermanowicz K, Hanuza J, Szczygie I (2015) Optical and thermal characterization of microcrystalline Na3RE(PO4)2:Yb orthophosphates synthesized by Pechini method (RE = Y, La, Gd). J Alloy Compd 619:275–283. https://doi.org/10.1016/j.jallcom.2014.08.189

    Article  CAS  Google Scholar 

  40. Mohassel R, Sobhani A, Salavati–Niasari M, Goudarzi M (2018) Pechini synthesis and characteristics of Gd2CoMnO6 nanostructures and its structural, optical and photocatalytic properties. Spectrochim Acta A 204:232–240. https://doi.org/10.1016/j.saa.2018.06.050

    Article  CAS  Google Scholar 

  41. Verma S, Rani S, Kumar S, Majeed Khan MA (2018) Rietveld refinement, micro-structural, optical and thermal parameters of zirconium titanate composites. Ceram Int 44:1653–1661. https://doi.org/10.1016/j.ceramint.2017.10.090

    Article  CAS  Google Scholar 

  42. Fahami A, Nasiri–Tabrizi B, Beall GW, Basirun WJ (2017) Structural insights of mechanically induced aluminum-doped hydroxyapatite nanoparticles by Rietveld refinement. Chin J Chem Eng 25:238–247. https://doi.org/10.1016/j.cjche.2016.07.013

    Article  CAS  Google Scholar 

  43. Kim Y–Il, Izumi F (1994) Structure refinements with a new version of the Rietveld–refinement program RIETAN. J Ceram Soc Jpn 102:401–404. https://doi.org/10.2109/jcersj.102.401

    Article  CAS  Google Scholar 

  44. Jouanneaux A, Verbaere A, Piffard Y (1991) How to distinguish between monoclinic distortions of NASICON and Sc2(WO4)3 structure types from X-ray-powder patterns-crystal-structure of Ni0.5Zr2(PO4)3. Eur J Solid State Inorg Chem 28:683–699

    CAS  Google Scholar 

  45. Pet’kov V, Asabina E, Markin A, Smirnova NN, Kitaev DB (2005) Thermodynamic data of the NZP compounds family. J Therm Anal Calorim 80:695–700. https://doi.org/10.1007/s10973-005-0716-4

    Article  CAS  Google Scholar 

  46. Asabina E, Glukhova I, Butrina O, Pet’kov V, Kovalsky A (2018) Synthesis and crystal structure of phosphates Zn0.5(1+x)FexM2-x(PO4)3 (M = Zr, Hf). J Alloy Compd 741:1229–1234. https://doi.org/10.1016/j.jallcom.2018.01.226

    Article  CAS  Google Scholar 

  47. Menil F (1985) Systematic trends of the Fe57 Mössbauer isomer shifts in (FeOn) and (FeFn) polyhedra. Evidence of a new correlation between the isomer shift and the inductive effect of the competing bond T–X ( → Fe) (where X is O or F and T any element with a formal positive charge). J Phys Chem Solids 7:763–789. https://doi.org/10.1016/0022-3697(85)90001-0

    Article  Google Scholar 

  48. Orlova A (2002) Isomorphism in crystalline phosphates of the NaZr2(PO4)3 structural type and radiochemical problems. Radiochem 44:423–445. https://doi.org/10.1023/A:1021192605465

    Article  CAS  Google Scholar 

  49. Pet’kov VI, Orlova AI (2003) Crystal-chemical approach to predicting the thermal expansion of compounds in the NZP family. Inorg Mater 39:1013–1023. https://doi.org/10.1023/A:1026074722220

    Article  Google Scholar 

  50. Gobechiya ER, Sukhanov MV, Pet’kov VI, Kabalov YUK (2008) Crystal structure of the double magnesium zirconium orthophosphate at temperatures of 298 and 1023 K. Cryst Rep 53:53–59. https://doi.org/10.1134/S1063774508010069

    Article  CAS  Google Scholar 

  51. Xie DY, Wang ZH, Liu XS, Song WB, Yuan BH, Liang EJ (2012) Rapid synthesis of low thermal expansion materials of Ca1–xSrxZr4P6O24. Ceram Int 38:3807–3813. https://doi.org/10.1016/j.ceramint.2012.01.029

    Article  CAS  Google Scholar 

  52. Dean–Mo L, Brown JJ (1993) Thermal expansion of porous (Ca1–xMgx)Zr4(PO4)6 ceramics. Mater Chem Phys 33:43–49. https://doi.org/10.1016/0254-0584(93)90088-4

    Article  Google Scholar 

  53. Wang Y, Zhou Y, Song Y, Yang L, Liu F (2018) Mechanical and thermal expansion studies on Ca0.5Sr0.5Zr4-xTixP6O24 ceramics. Ceram Int 44:16698–16702. https://doi.org/10.1016/j.ceramint.2018.06.097

    Article  CAS  Google Scholar 

  54. Pet’kov VI, Orlova AI, Kasantsev GN, Samoilov SG, Spiridonova ML (2001) thermal expansion in the Zr and 1-, 2-valent complex phosphates of NaZr2(PO4)3 (NZP) Structure. J Therm Anal Calorim 66:623–632. https://doi.org/10.1023/A:1013145807987

    Article  Google Scholar 

  55. Govindan Kutty KV, Asuvathraman R, Sridharan R (1998) Thermal expansion studies on the sodium zirconium phosphate family of compounds A1/2M2(PO4)3: effect of interstitial and framework cations. J Mater Sci 33:4007–4013. https://doi.org/10.1023/A:1004661132398

    Article  Google Scholar 

  56. Limaye SY, Agrawal DK, McKinstry HA (1987) Synthesis and thermal expansion of MZr4P6O24 (M = Mg, Ca, Sr, Ba). J Am Ceram Soc 70:232–236. https://doi.org/10.1111/j.1151-2916.1987.tb04884.x

    Article  Google Scholar 

Download references

Acknowledgements

The reported study was funded by Russian Fund of Basic Research (RFBR) according to the research project No. 18-29-12063 “Advanced mineral-like ceramics with improved service characteristics for an effective immobilization of toxic and radioactive elements” and by the Russian Science Foundation (Agreement number 20-79-10286) in the part of the characterization of materials (Andrey Kovalskii).

Author contribution

IG prepared and characterized the samples by XRD and IR methods, wrote the original draft of the manuscript. EA designed and supervised this work, co-wrote the manuscript. VP co-wrote, reviewed, and edited the manuscript. AK carried out SEM and EDX studies. KP performed Mössbauer spectroscopy experiments and processed the obtained data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Asabina.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glukhova, I., Asabina, E., Pet’kov, V. et al. Synthesis, structural characteristics, and thermal expansion behavior of zirconium phosphate ceramics with d-transition metals. J Sol-Gel Sci Technol 99, 354–365 (2021). https://doi.org/10.1007/s10971-021-05577-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05577-z

Keywords

Navigation