Skip to main content
Log in

The dispersion and tribological performances of magnesium silicate hydroxide nanoparticles enhanced by Span60 oleogel

  • Original Paper: Sol–gel and hybrid materials with surface modification for applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The oleogel acts as a middle phase to improve the dispersion stability of magnesium silicate hydroxide (MSH) nanoparticles in PAO base oils and simultaneously enhance the tribological properties of oil samples. The oleogel is comprised of Sorbitan monostearate (Span60), MSH nanoparticles, and PAO oil which is used as the gelator, anti-wear phase, and the base stock, respectively. The prepared oleogel and PAO oil are mixed by stirring to achieve the dispersion of MSH nanoparticles in oil. Centrifugal experiments showed that dispersion stability of MSH nanoparticles can be greatly improved through the oleogel middle phase. Tribological tests also show that the oleogel can further enhance the anti-wear and friction reduction performance of the lubricating oil.

Using the oleogel as a middle phase, the dispersion stability and tribological properties of magnesium silicate hydroxide (MSH) nanoparticles in PAO base oils was greatly improved.

Highlights

  • The dispersity stability of MSH nanoparticles is improved through the oleogel form.

  • The MSH nanoparticles and Span60 oleogel both improve the anti-wear effect of the base oil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Asadauskas SJ, Kreivaitis R, Bikulčius G, Grigucevičiene A, Padgurskas J (2016) Tribological effects of Cu, Fe and Zn nano-particles, suspended in mineral and bio-based oils. Lubr Sci 28:157–76. https://doi.org/10.1002/ls.1307

    Article  CAS  Google Scholar 

  2. Charoo MS, Wani MF (2017) Tribological properties of h-BN nanoparticles as lubricant additive on cylinder liner and piston ring. Lubr Sci 29:241–54. https://doi.org/10.1002/ls.1366

    Article  CAS  Google Scholar 

  3. Jiao D, Zheng S, Wang Y, Guan R, Cao B (2011) The tribology properties of alumina/silica composite nanoparticles as lubricant additives. Appl Surf Sci 257:5720–5. https://doi.org/10.1016/j.apsusc.2011.01.084

    Article  CAS  Google Scholar 

  4. Gao K, Chang Q, Wang B, Zhou N, Qing T (2018) The tribological performances of modified magnesium silicate hydroxide as lubricant additive. Tribol Int 121:64–70. https://doi.org/10.1016/j.triboint.2018.01.022

    Article  CAS  Google Scholar 

  5. Gao K, Chang Q, Wang B, Zhou N, Qing T (2018) Synthetic magnesium silicate hydroxide nanoparticles coated with carbonaceous shell in subcritical water condition. Appl Surf Sci 450:312–7. https://doi.org/10.1016/j.apsusc.2018.04.139

    Article  CAS  Google Scholar 

  6. Wang B, Chang QY, Gao K, Fang HR, Qing T, Zhou NN (2018) The synthesis of magnesium silicate hydroxide with different morphologies and the comparison of their tribological properties. Tribol Int 119:672–9. https://doi.org/10.1016/j.triboint.2017.11.020

    Article  CAS  Google Scholar 

  7. Chang Q, Rudenko P, Miller DJ, Wen J, Berman D, Zhang Y et al. (2017) Operando formation of an ultra-low friction boundary film from synthetic magnesium silicon hydroxide additive. Tribol Int 110:35–40. https://doi.org/10.1016/j.triboint.2017.02.003

    Article  CAS  Google Scholar 

  8. Chen Q, Zheng S, Yang S, Li W, Song X, Cao B (2012) Enhanced tribology properties of ZnO/Al2O3 composite nanoparticles as liquid lubricating additives. J Sol–Gel Sci Technol 61:501–8. https://doi.org/10.1007/s10971-011-2651-0

    Article  CAS  Google Scholar 

  9. Guibert C, Dupuis V, Fresnais J, Peyre V (2015) Controlling nanoparticles dispersion in ionic liquids by tuning the pH. J Colloid Interface Sci 454:105–11. https://doi.org/10.1016/j.jcis.2015.04.059

    Article  CAS  Google Scholar 

  10. Horst AM, Ji Z, Holden PA. Nanoparticle dispersion in environmentally relevant culture media: a TiO2 case study and considerations for a general approach. J Nanopart Res 2012;14. https://doi.org/10.1007/s11051-012-1014-2.

  11. Wu L, Zhang Y, Yang G, Zhang S, Yu L, Zhang P (2016) Tribological properties of oleic acid-modified zinc oxide nanoparticles as the lubricant additive in poly-alpha olefin and diisooctyl sebacate base oils. RSC Adv 6:69836–44. https://doi.org/10.1039/C6RA10042B

    Article  CAS  Google Scholar 

  12. Ali MKA, Xianjun H, Mai L, Qingping C, Turkson RF, Bicheng C (2016) Improving the tribological characteristics of piston ring assembly in automotive engines using Al2O3 and TiO2 nanomaterials as nano-lubricant additives. Tribol Int 103:540–54. https://doi.org/10.1016/j.triboint.2016.08.011

    Article  CAS  Google Scholar 

  13. Lee CS, Lee JS, Oh ST (2003) Dispersion control of Fe2O3 nanoparticles using a mixed type of mechanical and ultrasonic milling. Mater Lett 57:2643–6. https://doi.org/10.1016/S0167-577X(02)01343-5

    Article  CAS  Google Scholar 

  14. Bittmann B, Haupert F, Schlarb AK (2009) Ultrasonic dispersion of inorganic nanoparticles in epoxy resin. Ultrason Sonochem 16:622–8. https://doi.org/10.1016/j.ultsonch.2009.01.006

    Article  CAS  Google Scholar 

  15. Stuyven B, Chen Q, Van de Moortel W, Lipkens H, Caerts B, Aerts A et al. Magnetic field assisted nanoparticle dispersion. Chem Commun 2008:47–9. https://doi.org/10.1039/B816171B.

  16. Uvanesh K, Sagiri SS, Senthilguru K, Pramanik K, Banerjee I, Anis A et al. (2016) Effect of span 60 on the microstructure, crystallization kinetics, and mechanical properties of stearic acid oleogels: an in-depth analysis. J Food Sci 81:E380–7. https://doi.org/10.1111/1750-3841.13170

    Article  CAS  Google Scholar 

  17. Dassanayake LSK, Kodali DR, Ueno S (2011) Formation of oleogels based on edible lipid materials. Curr Opin Colloid Interface Sci 16:432–9. https://doi.org/10.1016/j.cocis.2011.05.005

    Article  CAS  Google Scholar 

  18. Savrik SA, Balköse D, Lku S (2011) Synthesis of zinc borate by inverse emulsion technique for lubrication. J Therm Anal Calorim 104:605–12. https://doi.org/10.1007/s10973-010-1159-0

    Article  CAS  Google Scholar 

  19. Baek S, Min J, Lee JW (2016) Equilibria of cyclopentane hydrates with varying HLB numbers of sorbitan monoesters in water-in-oil emulsions. Fluid Phase Equilib 413:41–7. https://doi.org/10.1016/J.FLUID.2015.10.018

    Article  CAS  Google Scholar 

  20. Murdan S, Gregoriadis G, Florence AT (1999) Novel sorbitan monostearate organogels. J Pharm Sci 88:608–14. https://doi.org/10.1021/JS980342R

    Article  CAS  Google Scholar 

  21. Murdan S, Gregoriadis G, Florence AT (1999) Inverse toroidal vesicles: precursors of tubules in sorbitan monostearate organogels. Int J Pharm 183:47–9. https://doi.org/10.1016/S0378-5173(99)00042-3

    Article  CAS  Google Scholar 

  22. Dhal S, Mohanty A, Yadav I, Uvanesh K, Kulanthaivel S, Banerjee I et al. (2017) Magnetic nanoparticle incorporated oleogel as iontophoretic drug delivery system. Colloids Surf B Biointerfaces 157:118–29. https://doi.org/10.1016/j.colsurfb.2017.05.061

    Article  CAS  Google Scholar 

  23. Qiu Y, Park K (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 53:321–39. https://doi.org/10.1016/S0169-409X(01)00203-4

    Article  CAS  Google Scholar 

  24. Hashmi SAR, Dwivedi UK, Chand N (2009) Concentration profile of glass fiber bundles in epoxy-based gradient composites during centrifugation. J Appl Polym Sci 113:3840–6. https://doi.org/10.1002/app.30399

    Article  CAS  Google Scholar 

  25. Hashmi SAR, Dwivedi UK (2007) Estimation of concentration of particles in polymerizing fluid during centrifugal casting of functionally graded polymer composites. J Polym Res 14:75–81. https://doi.org/10.1007/s10965-006-9083-5

    Article  CAS  Google Scholar 

  26. Wen S, Huang P (2011) Principles of Tribology. John Wiley & Sons (Asia) Pte Ltd, Singapore, https://doi.org/10.1002/9781118062913

Download references

Acknowledgements

This work was funded by the Fundamental Research Funds for the Central Universities (Grant No. 2017YJS160), the National Defense Pre-Research Foundation of China (Grant No. 30103020301) and the National Natural Science Foundation of China (Grant No. 51075026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Gao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, K., Chang, Q. & Wang, B. The dispersion and tribological performances of magnesium silicate hydroxide nanoparticles enhanced by Span60 oleogel. J Sol-Gel Sci Technol 94, 165–173 (2020). https://doi.org/10.1007/s10971-019-05167-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-019-05167-0

Keywords

Navigation