Skip to main content
Log in

Improvement of high-temperature resistance on carbon fiber felt/portland cement composite friction material by Al2O3 sol–gel coating

  • Original Paper: Industrial and technological applications of sol–gel and hybrid materials
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The extrusion impregnation method is used to prepare carbon fiber felt/portland cement (CFF/PC) composite materials. The samples are placed into muffle furnace for ablation, but carbon fiber is oxidized at around 450 °C. To improve the oxidation resistance of carbon fiber, Al2O3 sol–gel (AS) is prepared to coat the surface of carbon fiber. The extrusion impregnation method is also used to prepare AS–CFF/PC composite materials. The samples are also ablated into muffle furnace at different temperatures. The results indicate that carbon fiber is uniformly dispersed and closely arranged in the matrix, presenting a three-dimensional network distribution. The bending and compressive strengths of CFF/PC composite materials are increased by 200% and 12% when compared with that of PC material at room temperature. The AS coating layer can effectively improve the antioxidant capacity of carbon fiber at high temperatures. The comparison reveals that AS–CFF/PC composite materials exhibit improved high-temperature resistance performance.

Highlights

  • CFF/PC and AS–CFF/PC composites were prepared by extrusion impregnation method.

  • Sol–gel method was used to prepare different concentrations of Al2O3 sol–gel (AS).

  • AS coating layer can improve the antioxidant capacity of carbon fiber.

  • AS–CFF/PC composites exhibit improved high-temperature resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Mohanty RM (2013) Climate based performance of carbon-carbon disc brake for high speed aircraft braking system. Def Sci J 63(5):531–538

    Article  Google Scholar 

  2. Li SZ, Luo C (2000) Present state of non-asbestic friction materials for the use of automobiles in china. Powder Metall Ind 10(2):38–41

    Google Scholar 

  3. Wang Y, Zhou YK, Nie HW (2016) Study on the friction factor and high-temperature friction resistance of semi-metal frictional materials. Key Eng Mater 693:629–637

    Article  Google Scholar 

  4. Jang H, Ko K, Kim SJ, Fash JW (2004) The effect of metal fibers on the friction performance of automotive brake friction materials. Wear 256(3–4):406–414

    Article  Google Scholar 

  5. Kwon DJ, Shin PS, Kim JH, Devries KL, Park JM (2016) Evaluation of dispersion and damage sensing of carbon fiber/polypropylene (PP)-polyamide (PA) composites using 2 dimensional electrical resistance mapping. Compos Part A 90:417–423

    Article  Google Scholar 

  6. Chauhan S, Kumar A, Patnaik A, Satapathy A, Singh I (2009) Mechanical and wear characterization of GF reinforced vinylester resin composites with different comonomers. J Reinf Plast Compos 28(21):2675–2684

    Article  Google Scholar 

  7. Xu LX, Guan HB, Yang ZW, Hao XZ (2015) Preparation and mechanical property of C/SiC composite by vacuum infusion method. J Mater Eng 43(12):10–16

    Google Scholar 

  8. Talijan NM, Trifunović DS, Trifunović DD (2000) The influence of different iron powders on the friction properties of sintered friction materials based on iron. Mater Lett 46(5):255–260

    Article  Google Scholar 

  9. Magnier V, Roubin E, Colliat JB, Dufrénoy P (2017) Methodology of porosity modeling for friction pad: Consequence on squeal. Tribol Int 109:78–85

    Article  Google Scholar 

  10. Ertan R (2016) Synergistic effect of organic- and ceramic-based ingredients on the tribological characteristics of brake friction materials. Mater Tehnol 50(2):223–228

    Article  Google Scholar 

  11. Wang FH, Liu Y (2012) Effectcs of mullite fiber content on friction and wear properties of ceramic-based friction material. J Mater Eng 12:61–65

    Google Scholar 

  12. Hoshino S, Tadokoro C, Sasaki S (2016) Effect of surface texturing on friction transition of C/C composite material. Tribol Online 11(2):426–431

    Article  Google Scholar 

  13. Wei K, Cheng X, He R, Pei Y, Fang D (2014) Heat transfer mechanism of the C/SiC ceramics pyramidal lattice composites. Compos Part B 63(5):8–14

    Article  Google Scholar 

  14. Krenkel W, Berndt F (2005) C/C–SiC composites for space applications and advanced friction systems. Mater Sci Eng A 412(1–2):177–181

    Article  Google Scholar 

  15. Farzadnia N, Ali AAA, Demirboga R (2013) Characterization of high strength mortars with nano alumina at elevated temperatures. Cem Concr Res 54:43–54

    Article  Google Scholar 

  16. Pernites RB, Santra AK (2016) Portland cement solutions for ultra-high temperature wellbore applications. Cem Concr Compos 72:89–103

    Article  Google Scholar 

  17. Madej D, Szczerba J (2017) Detailed studies on microstructural evolution during the high temperature corrosion of SiC-containing andalusite refractories in the cement kiln preheater. Ceram Int 43:1988–1996

    Article  Google Scholar 

  18. Wang YL, Zhun BQ, Li XC, Chen PA (2016) Effect of dispersants on the hydrate morphologies of spinel-containing calcium aluminate cement and on the properties of refractory castables. Ceram Int 42(1):711–720

    Article  Google Scholar 

  19. Ouedraogo E, Roosefid M, Prompt N, Deteuf C (2011) Refractory concretes uniaxial compression behaviour under high temperature testing conditions. J Eur Ceram Soc 31(15):2763–2774

    Article  Google Scholar 

  20. Ranade R, Zhang J, Lynch JP, Li VC (2014) Influence of micro-cracking on the composite resistivity of engineered cementitious composites. Cem Concr Res 58:1–12

    Article  Google Scholar 

  21. Laukaitis A, Kerienė J, Kligys M, Mikulskis D, Lekūnaitė L (2012) Influence of mechanically treated carbon fibre additives on structure formation and properties of autoclaved aerated concrete. Constr Build Mater 26(1):362–371

    Article  Google Scholar 

  22. Düzgün OA, Gül R, Aydin AC (2005) Effect of steel fibers on the mechanical properties of natural lightweight aggregate concrete. Mater Lett 59(27):3357–3363

    Article  Google Scholar 

  23. Xu LX, Jiang AX, Yang ZW, Guan HB, Jia H, Min MY (2017) Mechanical properties of CFF/MC/SF composite prepared using vacuum infusion impregnation method. Results Phys 7:1016–1021

    Article  Google Scholar 

  24. Wang C, Jiao GS, Li BL, Peng L, Feng Y, Gao N, Li KZ (2017) Dispersion of carbon fibers and conductivity of carbon fiber-reinforced cement-based composites. Ceram Int 43:15122–15132

    Article  Google Scholar 

  25. Jiang AX, Xu LX, Guan HB, Yang ZW, Jia H (2017) Effect of silica fume content on tribological property of carbon felt/cement composite. Mater Mech Eng 41(5):74–78

    Google Scholar 

  26. Min MY, Xu LX, Jiang AX, Yang ZW, Zhu RY (2017) Effect of graphite on friction properties of carbon felt/cement composites. Non-Met Mines 40(6):101–103

    Google Scholar 

  27. Cairo CAA, Graça MLA, Silva CRM, Bressiani JC (2001) Functionally gradient ceramic coating for carbon–carbon antioxidation protection. J Eur Ceram Soc 21(3):325–329

    Article  Google Scholar 

  28. Morales A, Duran A (1997) Sol–gel protection of front surface silver and aluminum mirrors. J Sol–Gel Sci Technol 8:451–457

    Google Scholar 

  29. EI-Didamony H, EI-Rahman EA, Osman RM (2012) Fire resistance of fired clay bricks–fly ash composite cement pastes. Ceram Int 38(1):201–209

    Article  Google Scholar 

  30. Silva FDA, Butler M, Hempel S, Filho RDT, Mechtcherine V (2014) Effects of elevated temperatures on the interface properties of carbon textile-reinforced concrete. Cem Concr Compos 48(4):26–34

    Article  Google Scholar 

  31. Rashad AM, Bai Y, Basheer PAM, Collier NC, Milestone NB (2012) Chemical and mechanical stability of sodium sulfate activated slag after exposure to elevated temperature. Cem Concr Res 42(2):333–343

    Article  Google Scholar 

  32. Xu WT, Dai JG, Ding Z, Wang YS (2017) Polyphosphate-modified calcium aluminate cement under normal and elevated temperatures: phase evolution, microstructure, and mechanical properties. Ceram Int 43:15525–15536

    Article  Google Scholar 

  33. Hafiane YE, Smith A, Abouliatim Y, Chartier T, Nibou L, Bonnet JP (2014) Calcium aluminate cement tapes—Part I: structural and microstructural characterizations. J Eur Ceram Soc 34(4):1017–1023

    Article  Google Scholar 

  34. Bayramli E, Toppare L, Erinc NK (2001) Investigations on the electrochemical surface treatment of carbon fibers. Turk J Chem 25(3):251–258

    Google Scholar 

  35. Aleš N, Kaja J, Ivan J, Daniel V, Milan B, Borut K, Blaž K, Borut Z (2018) The effect of sol–gel boehmite coatings on the corrosion and decarburization of C45 steel. J Sol–Gel Sci Technol 86:1–12

    Article  Google Scholar 

  36. Ghasemi-Kahrizsangi S, Dehsheikh HG, Karamian E, Ghasemi-Kahrizsangi A, Hosseini SV (2017) The influence of Al2O3 nanoparticles addition on the microstructure and properties of bauxite self–flowing low-cement castables. Ceram Int 43:8813–8818

    Article  Google Scholar 

  37. Potong R, Rianyoi R, Ngamjarurojana A, Yimnirun R, Guo R, Bhalla AS, Chaipanich A (2017) Thermal expansion behaviors of 0–3 connectivity lead-free barium zirconate titanate-portland cement composites. Ceram Int 43:S129–S135

    Article  Google Scholar 

  38. Nematollahi B, Qiu JS, Yang EH, Sanjayan J (2017) Microscale investigation of fiber-matrix interface properties of strain-hardening geopolymer composite. Ceram Int 43:15616–15625

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51236003) and the Natural Science Foundation of Gansu Province (1506RJZA076).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lixin Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Min, M., Yang, S. et al. Improvement of high-temperature resistance on carbon fiber felt/portland cement composite friction material by Al2O3 sol–gel coating. J Sol-Gel Sci Technol 91, 471–484 (2019). https://doi.org/10.1007/s10971-019-05050-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-019-05050-y

Keywords

Navigation