Skip to main content

Advertisement

Log in

Influence of zeolite carriers on the dyes degradation for framework Fe-doped zeolite catalysts

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Fe-doped zeolites with Mobil Five (MFI) structure have been widely used as heterogeneous Fenton catalysts to eliminate dyes from wastewater. However, the influence of carriers on degradation efficiency has not been reported yet. In this work, we have prepared three Fe-doped zeolite catalysts, FeS-1, FeZSM-5, and FeTS-1, with silicalite-1 (S-1), zeolite socony mobil-5 (ZSM-5), and titanium silicalite-1 (TS-1) as carriers, respectively. Characterizations, such as X-ray diffraction (XRD), scanning electron microscopy, energy-disperse X-ray spectroscopy, Fourier transform infrared spectroscopy, ultraviolet-visible diffuse reflection spectroscopy (UV–Vis DRS), X-ray fluorescence spectrometer, zeta potential, and N2 adsorption/desorption isotherms, were used to investigate the morphologies and physicochemical properties of the synthesized materials. The catalytic performances of all zeolite catalysts were evaluated in the degradation experiments. The results depicted that the degradation efficiency of FeZSM-5 was higher than that of FeS-1 and FeTS-1 owing to its higher hydrophilic property, larger external specific surface area, and more negative zeta potential value. Therefore, the ZSM-5 could be a more suitable solid matrix for heterogeneous Fenton reactions than S-1 and TS-1.

Highlights

  • Three different Fe-doped MFI zeolites have been prepared using hydrothermal synthesis.

  • UV–Vis DRS confirms that Fe has been incorporated into the framework of S-1, TS-1, and ZSM-5.

  • The degradation efficiency of FeZSM-5 is the highest owing to its higher hydrophilic property, larger external specific surface area, and more negative zeta potential value.

  • The ZSM-5 could be a more suitable solid matrix for heterogeneous Fenton reactions than S-1 and TS-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Rahim Pouran S, Abdul Raman AA, Wan Daud WMA (2014) J Clean Prod 64:24–35

    Article  Google Scholar 

  2. Munoz M, de Pedro ZM, Casas JA, Rodriguez JJ (2015) Appl Catal B 176–177:249–265

    Article  Google Scholar 

  3. Moreira FC, Boaventura RAR, Brillas E, Vilar VJP (2017) Appl Catal B 202:217–261

    Article  Google Scholar 

  4. Asghar A, Abdul Raman AA, Wan Daud WMA (2015) J Clean Prod 87:826–838

    Article  Google Scholar 

  5. Brillas E, Martínez-Huitle CA (2015) Appl Catal B 166–167:603–643

    Article  Google Scholar 

  6. Rajoriya S, Bargole S, Saharan VK (2017) Ultrason Sonochem 34:183–194

    Article  Google Scholar 

  7. Quadrado RFN, Fajardo AR (2017) Carbohyd Polym 177:443–450

    Article  Google Scholar 

  8. Wang X, Pan Y, Zhu Z, Wu J (2014) Chemosphere 117:638–643

    Article  Google Scholar 

  9. Sun SP, Li CJ, Sun JH, Shi SH, Fan MH, Zhou Q (2009) J Hazard Mater 161:1052–1057

    Article  Google Scholar 

  10. Ashraf U, Chat OA, Dar AA (2014) Chemosphere 99:199–206

    Article  Google Scholar 

  11. Duarte F, Maldonado-Hódar FJ, Pérez-Cadenas AF, Madeira LM (2009) Appl Catal B 85:139–147

    Article  Google Scholar 

  12. Ma J, Yang Q, Wen Y, Liu W (2017) Appl Catal B 201:232–240

    Article  Google Scholar 

  13. Wang JL, Xu LJ (2012) Crit Rev Environ Sci Technol 42:251–325

    Article  Google Scholar 

  14. Wang S (2008) Dyes Pigments 76:714–720

    Article  Google Scholar 

  15. Hsueh CL, Huang YH, Wang CC, Chen CY (2005) Chemosphere 58:1409–1414

    Article  Google Scholar 

  16. Huang Z, Ye Y, Zhu S, Yao Y, Lu W, Chen W (2015) J Chem Technol Biot 90:1144–1151

    Article  Google Scholar 

  17. Ramirez JH, Maldonado-Hódar FJ, Pérez-Cadenas AF, Moreno-Castilla C, Costa CA, Madeira LM (2007) Appl Catal B 75:312–323

    Article  Google Scholar 

  18. Melero JA, Calleja G, Martínez F, Molina R, Pariente MI (2007) Chem Eng J 131:245–256

    Article  Google Scholar 

  19. Wu Z, Zhu W, Zhang M, Lin Y, Xu N, Chen F, Wang D, Chen Z (2018) Ind Eng Chem Res 57:5539–5549

    Article  Google Scholar 

  20. Ge T, Hua Z, Lv J, Zhou J, Guo H, Zhou J, Shi J (2017) CrystEngComm 19:1370–1376

    Article  Google Scholar 

  21. Li W, Li G, Jin C, Liu X, Wang J (2015) J Mater Chem A 3:14786–14793

    Article  Google Scholar 

  22. Groen JC, Moulijn JA, Pérez-Ramírez J (2006) J Mater Chem 16:2121–2131

    Article  Google Scholar 

  23. Yan Y, Jiang S, Zhang H (2014) Sep Purif Technol 133:365–374

    Article  Google Scholar 

  24. Aleksić M, Kušić H, Koprivanac N, Leszczynska D, Božić AL (2010) Desalination 257:22–29

    Article  Google Scholar 

  25. Prihod’ko R, Stolyarova I, Gündüz G, Taran O, Yashnik S, Parmon V, Goncharuk V (2011) Appl Catal B 104:201–210

    Article  Google Scholar 

  26. Dükkancı M, Gündüz G, Yılmaz S, Yaman YC, Prikhod’ko RV, Stolyarova IV (2010) Appl Catal B 95:270–278

    Article  Google Scholar 

  27. Yan Y, Jiang S, Zhang H (2016) RSC Adv 6:3850–3859

    Article  Google Scholar 

  28. Phu NH, Hoa TTK, Van Tan N, Thang HV, Le Ha P (2001) Appl Catal B 34:267–275

    Article  Google Scholar 

  29. Stolyarova IV, Kovban’ IB, Prikhod’ko RV, Kushko AO, Sychev MV, Goncharuk VV (2007) Russ J Appl Chem+ 80:746–753

    Article  Google Scholar 

  30. Ovejero G, Sotelo JL, Martínez F, Melero JA, Gordo L (2001) Ind Eng Chem Res 40:3921–3928

    Article  Google Scholar 

  31. Peng P, Wang Y, Rood MJ, Zhang Z, Subhan F, Yan Z, Qin L, Zhang Z, Zhang Z, Gao X (2015) CrystEngComm 17:3820–3828

    Article  Google Scholar 

  32. Cheng Y, Wang L-J, Li J-S, Yang Y-C, Sun X-Y (2005) Mater Lett 59:3427–3430

    Article  Google Scholar 

  33. Yuan E, Wu G, Dai W, Guan N, Li L (2017) Catal Sci Technol 7:3036–3044

    Article  Google Scholar 

  34. Lv G, Wang F, Zhang X (2017) Appl Catal A 547:191–198

    Article  Google Scholar 

  35. Lv G, Wang F, Zhang X, Binks BP (2018) Langmuir 34:302–310

    Article  Google Scholar 

  36. Meng Y, Genuino HC, Kuo CH, Huang H, Chen SY, Zhang L, Rossi A, Suib SL (2013) J Am Chem Soc 135:8594–8605

    Article  Google Scholar 

  37. Serrano DP, Calleja G, Botas JA, Gutierrez FJ (2007) Sep Purif Technol 54:1–9

    Article  Google Scholar 

  38. Zheng C, Cheng X, Yang C, Zhang C, Li H, Kan L, Xia J, Sun X (2015) RSC Adv 5:98842–98852

    Article  Google Scholar 

  39. Luo L, Dai C, Zhang A, Wang J, Song C, Guo X (2016) RSC Adv 6:32789–32797

    Article  Google Scholar 

  40. Sashkina KA, Labko VS, Rudina NA, Parmon VN, Parkhomchuk EV (2013) J Catal 299:44–52

    Article  Google Scholar 

  41. Taniguchi T, Nakasaka Y, Yoneta K, Tago T, Masuda T (2016) Micropor Mesopor Mat 224:68–74

    Article  Google Scholar 

  42. Xia M, Long M, Yang Y, Chen C, Cai W, Zhou B (2011) Appl Catal B 110:118–125

    Article  Google Scholar 

  43. Lee J, Choi W, Yoon J (2005) Environ Sci Technol 39:6800–6807

    Article  Google Scholar 

  44. Khalil LB, Girgis BS, Tawfik TAM (2001) J Chem Technol Biot 76:1132–1140

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2018YFB0604902), the National Basic Research Program of China (973 Program) (Grant No: 2012CB720302), and the National Key Research and Development Program of China (2016YFF0102503).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xubin Zhang or Fumin Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, S., Zhang, X., Lv, G. et al. Influence of zeolite carriers on the dyes degradation for framework Fe-doped zeolite catalysts. J Sol-Gel Sci Technol 91, 54–62 (2019). https://doi.org/10.1007/s10971-019-05030-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-019-05030-2

KeyWord

Navigation