Skip to main content
Log in

Relation between chemical composition of sols and surface free energy of inorganic-organic films

  • Original Paper: Characterization methods of sol-gel and hybrid materials
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The presented study deals with relation between chemical composition of precursor sols and surface free energy of inorganic-organic films. Inorganic-organic films were prepared from precursor sols in “tetraethoxysilane (TEOS) - triethoxy(octyl)silane (OTES) - distilled water - nitric acid - isopropyl alcohol” system. The fifteen sols were prepared, where the ratio of K = x(OTES)/(x(TEOS) + x(OTES)) varied from 0 to 0.5 and ratio of R=x(H2O)/(x(TEOS) + x(OTES)) varied from 2 to 6. The relationship between chemical composition and surface free energy of inorganic-organic films was quantified by model selection approach. Model, which describes the studied relationship in the best way, was selected on the basis of Akaike information criterion. Based on the analysis of selected (the best describing) model, it was found out that the surface free energy as well as its dispersion and polar component are dependent only on K ratio in observed range of K and R values. Form the physico-chemical aspect, the observed dependences of surface free energy, its dispersive and polar component on chemical composition of precursor sols are explained by the influence of octyl groups on the sequences of hydrolysis and condensation reactions leading to formation of particles in precursor sol. In addition, the arrangement of octyl groups is used for explanation of particles arrangement on film surface.

Highlights

  • Study of surface free energy and its dispersion and polar component.

  • Inorganic-organic films in “TEOS-OTES-H2O-HNO3-IPA” system.

  • Finding of the best description by model selection approach.

  • Description of sol composition - film surface property relation.

  • Surface properties depend only on OTES concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zheng SX, Li JH (2010) Inorganic-organic sol gel hybrid coatings for corrosion protection of metals. J Sol-Gel Sci Technol 54:174–187

    Article  CAS  Google Scholar 

  2. Oyola-Reynoso S, Wang Z, Chen J, Çınar S, Chang B, Thuo M (2015) Revisiting the challenges in fabricating uniform coatings with polyfunctional molecules on high surface energy materials. Coatings 5:1002–1018

    Article  CAS  Google Scholar 

  3. Yang H, Pi P, Cai Z-Q, Wen X, Wang X, Cheng J, Yang Z-r (2010) Facile preparation of super-hydrophobic and super-oleophilic silica film on stainless steel mesh via sol-gel process. Appl Surf Sci 256:4095–4102

    Article  CAS  Google Scholar 

  4. Shen K, Yu M, Li Q, Sun W, Zhang X, Quan M, Liu Z, Shi S, Gong YK (2017) Synthesis of fluorine-free polymeric water-repellent agent for creation of superhydrophobic fabrics. Appl Surf Sci 426:694–703

    Article  CAS  Google Scholar 

  5. Raimondo M, Veronesi F, Boveri G, Guarini G, Motta A, Zanoni R (2017) Superhydrophobic properties induced by sol-gel routes on copper surfaces. Appl Surf Sci 422:1022–1029

    Article  CAS  Google Scholar 

  6. Drechsler A, Estel K, Caspari A, Bellman C, Harenburg J, Meier F, Zschuppe M (2017) New strategies to create technologically relevant superomniphobic coatings on sol-gel base. Progr Org Coat 109:160–171

    Article  CAS  Google Scholar 

  7. Carbajal-de la Torre G, Espinosa-Medina MA, Martinez-Villafañe A, Gonzalez-Rodriguez JG, Gastaño VM (2009) Study of ceramic and hybrid coatings produced by sol-gel method for corrosion protection. Open Corros J 2:197–203

    Article  CAS  Google Scholar 

  8. Kickelbick G (2014) Hybrid materials – past, present and future. Hybrid Mater 1:39–51

    Google Scholar 

  9. Schroeder G, Łęska B, Kurczewska J (2012) Functionalized hybrid materials – from concept, through laboratory to business. Chemik 66:196–205

    CAS  Google Scholar 

  10. Kickelbick G (2007) Introduction in hybrid materials. In: Kickelbick G (ed.) Hybrid Materials: Synthesis, Characterization and Applications. Wiley, Weinheim, p 1–48

  11. Sanchez C, Julián B, Belleville P, Popall M (2005) Applications of hybrid organic-inorganic nanocomposites. J Mater Chem 15:3559–3592

    Article  CAS  Google Scholar 

  12. Bhushan B, Jung YC (2011) Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Prog Mater Sci 56:1–108

    Article  CAS  Google Scholar 

  13. Wang SS, Luo SS (2012) Fabrication of transparent superhydrophobic silica-based film on a glass substrate. Appl Surf Sci 258:5443–5450

    Article  CAS  Google Scholar 

  14. Latte SS, Imai H, Ganesan V, Rao AV (2009) Superhydrophobic silica films by sol-gel co-precursor method. Appl Surf Sci 256:217–222

    Article  Google Scholar 

  15. Wen X-F, Wang K, Pi P-H, Yang J-X, Cai Z-Q, Zhang L-j, Qian Y, Yang ZR, Zheng D-f, Cheng J (2011) Organic-inorganic hybrid superhydrophobic surfaces using methyltriethoxysilane and tetraethoxysilane sol-gel derived materials in emulsion. Appl Surf Sci 258:991–998

    Article  CAS  Google Scholar 

  16. Ma M, Hill RM (2006) Superhydrophobic surfaces. Curr Opin Colloid Interface Sci 11:193–202

    Article  CAS  Google Scholar 

  17. Plško A, Pagáčová J, Šulcová J, Bieliková B, Tomagová M, Michálková K, Rodová A (2014) Nanocomposite films prepared from stabilized aqueous SiO2 sols. J Non-Cryst Solids 401:129–133

    Article  Google Scholar 

  18. Huang S-I, Shen Y-J, Chen H (2009) Study on the hydrophobic surfaces prepared by two-step sol-gel process. Appl Surf Sci 255:7040–7046

    Article  CAS  Google Scholar 

  19. Ramezani M, Vaezi MR, Kazemzadeh A (2015) Study water repellency of the modified silica films using different organoalkoxysilanes. Appl Phys A 119:845–852

    Article  CAS  Google Scholar 

  20. Zhang F, Shi Z, Jiang Y, Xu C, Wu Z, Wang Y, Peng C (2017) Fabrication of transparent superhydrophobic glass with fibered-silica network. Appl Surf Sci 407:526–531

    Article  CAS  Google Scholar 

  21. Fabbri P, Messori M, Montecchi M, Pilati F, Taurino R, Tonelli C, Toselli M (2006) Surface properties of fluorinated hybrid coatings. J Appl Polym Sci 102:1483–1488

    Article  CAS  Google Scholar 

  22. Kim EK, Kim JY, Kim SS (2013) Synthesis of superhydrophobic SiO2 layers via combination of surface roughness and fluorination. J Solid State Chem 197:23–28

    Article  CAS  Google Scholar 

  23. Xiong D, Liu G, Scott Duncan EJ (2013) Robust amphiphobic coatings from bi-functional silica particles on flat substrates. Polym (Guildf) 54:3008–3016

    Article  CAS  Google Scholar 

  24. Mou CY, Yuan WL, Shih ChH (2013) Preparation and characterization of ultra-thin amphiphobic coatings on silicon wafers. Thin Solids Films 537:202–207

    Article  CAS  Google Scholar 

  25. Kumar D, Wu X, Fu Q, Ho JWC, Kanhere PD, Li L, Chen Z (2015) Development of durable self-cleaning coatings using organic–inorganic hybrid sol–gel method. Appl Surf Sci 344:205–212

    Article  CAS  Google Scholar 

  26. Liu S, Liu X, Latthe SS, Gao L, An S, Yoon SS, Liu B, Xing R (2015) Self-cleaning transparent superhydrophobic coatings through simple sol–gel processing of fluoroalkylsilane. Appl Surf Sci 351:897–903

    Article  CAS  Google Scholar 

  27. Hancer M, Arkaz H (2015) A facile fabrication of superhydrophobic nanocomposite coating with contact angles approaching the theoretical limit. Appl Surf Sci 354:342–346

    Article  CAS  Google Scholar 

  28. Oldani V, Sergi G, Pirola C, Bianchi CL (2016) Use of a sol-gel hybrid coating composed by a fluoropolymer and silica for the mitigation of mineral fouling in heat exchangers. Appl Therm Eng 106:427–431

    Article  CAS  Google Scholar 

  29. Liu S, Latthe SS, Yang H, Liu B, Xing R (2015) Raspberry-like superhydrophobic silica coatings with self-cleaning properties. Ceram Int 41:11719–11725

    Article  CAS  Google Scholar 

  30. Wang Z, Cousins IT, Scheringer M, Buck RC, Hungerbühler K (2014) Global emission inventories for C 4 –C 14 perfluoroalkyl carboxylic acid (PFCA) homologues from 1951 to 2030, Part I: production and emissions from quantifiable sources. Environ Int 70:62–75

    Article  Google Scholar 

  31. Wang Z, Cousins IT, Scheringer M, Buck RC, Hungerbühler K (2014) Global emission inventories for C 4 –C 14 perfluoroalkyl carboxylic acid (PFCA) homologues from 1951 to 2030, Part II: the remaining pieces of the puzzle. Environ Int 69:166–176

    Article  CAS  Google Scholar 

  32. Wang Z, Cousins IT, Scheringer M, Hungerbuehler K (2015) Hazard assessment of fluorinated alternatives to long-chain perfluoroalkyl acids (PFAAs) and their precursors: Status quo, ongoing challenges and possible solutions. Environ Int 75:172–179

    Article  CAS  Google Scholar 

  33. Scheringer M, Trier X, Cousins IT, Voogt P, Fletcher T, Wang Z, Webster TF (2014) Helsingør statement on poly- and perfluorinated alkyl substances (PFASs). Chemosphere 114:337–339

    Article  CAS  Google Scholar 

  34. Zhang XG, Wang HY, Liu ZH, Zhu YX, Wu SQ, Wang CJ, Zhu YJ (2017) Fabrication of durable fluorine-free superhydrophobic polyethersulfone (PES) composite coating enhanced by assembled MMT-SiO2 nanoparticles. Appl Surf Sci 396:1580–1588

    Article  CAS  Google Scholar 

  35. Jeevajothi K, Crossiya D, Subasri R (2012) Non-fluorinated, room temperature curable hydrophobic coatings by sol–gel process. Ceram Int 38:2971–2976

    Article  CAS  Google Scholar 

  36. Uricanu V, Donescu D, Banu AG, Serban S, Olteanu M, Dudau M (2004) Organic–inorganic hybrids made from polymerizable precursors. Mater Chem Phys 85:120–130

    Article  CAS  Google Scholar 

  37. Brambilla R, Pires GP, da Silveira NP, dos Santos JHZ, Miranda MSL, Frost RL (2008) Spherical and lamellar octadecylsilane hybrid silicas. J Non-Cryst Solids 354:5033–5040

    Article  CAS  Google Scholar 

  38. Das S, Jain TK, Maitra A (2002) Inorganic-organic nanoparticles from n-octyl triethoxy silane. J Colloid Interface Sci 252:82–88

    Article  CAS  Google Scholar 

  39. Parale VG, Mahadik DB, Mahadik SA, Kavale MS, Wagh PB, Gupta SC, Rao AV (2013) OTES modified transparent dip coated silica coatings. Ceram Int 39:835–840

    Article  CAS  Google Scholar 

  40. Brinker CJ, Scherer GW (1989) Sol-gel science: the physics and chemistry of sol-gel processing. Academic Press, Boston

    Google Scholar 

  41. Sakka S (2005) Handbook of sol-gel science and technology: processing, characterization and applications. Kluwer Academic Publishers, Boston

    Google Scholar 

  42. Plško A, Exnar P (1989) The application of sol-gel methods for the preparation of advanced materials, namely glasses. Silikaty 33:69–84

    Google Scholar 

  43. Ramezani M, Vaezi MR, Kazemzdeh A (2015) The influence of hydrophobic agent, catalyst, solvent and water content on the wetting properties of the silica films prepared by one-step sol-gel method. Appl Surf Sci 326:99–106

    Article  CAS  Google Scholar 

  44. Yang X, Zhu L, Chen Y, Bao B, Xu J, Zhou W (2016) Controlled hydrophilic/hydrophobic property of silica films by manipulating the hydrolysis and condensation of tetraethoxysilane. Appl Surf Sci 376:1–9

    Article  CAS  Google Scholar 

  45. Pantoja M, Abenojar J, Martinez MA (2017) Influence of type of solvent on the development of superhydrophobicity from silane-based solution containing nanoparticles. Appl Surf Sci 397:87–94

    Article  CAS  Google Scholar 

  46. Laine RM (2005) Nanobuilding blocks based on the [OSiO1.5]x (x=6, 8, 10) octasilsesquioxanes. J Mater Chem 15:3725–3744

    Article  CAS  Google Scholar 

  47. Kannan RY, Salacinski HJ, Butler PE, Seifalian AM (2005) Polyhedral oligomeric silsesquioxane nanocomposites: the next generation material for biomedical applications. Acc Chem Res 38:879–884

    Article  CAS  Google Scholar 

  48. Chuang W-P, Sheen Y-C, Wei S-M, Yen M-Y, Ma C-CM (2013) Structural control of silane-grafted polymethylsilsesquioxane. Eur Polym J 49:646–651

    Article  CAS  Google Scholar 

  49. Mori H (2012) Design and synthesis of functional silsesquioxane-based hybrids by hydrolytic condensation of bulky triethoxysilanes. Int J Polym Sci 2012:17

    Article  Google Scholar 

  50. Fortuniak W, Chojnowski J, Slomkowski S, Pospiech P, Kurjata J (2013) Route to hydrophilic, hydrophobic and functionalized cross-linked polysiloxane microspheres. Polym (Guildf) 54:3156–3165

    Article  CAS  Google Scholar 

  51. Simionescu B, Bordianu I-E, Aflori M, Doroftei F, Mares M, Patras X, Nicolescu A, Olaru M (2012) Hierarchically structured polymer blends based on silsesquioxane hybrid nanocomposites with quaternary ammonium units for antimicrobial coatings. Mater Chem Phys 134:190–199

    Article  CAS  Google Scholar 

  52. Rupp F, Gittens RA, Scheideler L, Marmur A, Boyan BD, Schwartz Z, Geis-Gerstorfer J (2014) A review on the wettability of dental implant surfaces I: theoretical and experimental aspects. Acta Biomater 10:2894–2906

    Article  CAS  Google Scholar 

  53. Boinovich L, Emelyanenko A (2011) Wetting and surface forces. Adv Colloid Interface Sci 165:60–69

    Article  CAS  Google Scholar 

  54. Kwok DY, Neumann AW (2000) Contact angle interpretation in terms of solid surface tension. Colloids Surf A Physicochem Eng Asp 161:31–48

    Article  CAS  Google Scholar 

  55. Shalel-Levanon S, Marmur A (2003) Validity and accuracy in evaluating surface tension of solids by additive approaches. J Colloid Interface Sci 262:489–499

    Article  CAS  Google Scholar 

  56. Erbil HY (2014) The debate on the dependence of apparent contact angles on drop contact area or three-phase contact line: A review. Surf Sci Rep 69:325–365

    Article  CAS  Google Scholar 

  57. Yan YY, Gao N, Barthlott W (2011) Mimicking natural superhydrophobic surfaces and grasping the wetting process. Adv Colloid Interface Sci 169:80–105

    Article  CAS  Google Scholar 

  58. Fowkes FM (1964) Attractive forces at interfaces. Ind Eng Chem 56:40–52

    Article  CAS  Google Scholar 

  59. Fowkes FM (1972) Donor-acceptor interactions at interfaces. J Adhes 4:155–159

    Article  CAS  Google Scholar 

  60. Owens DK, Wendt RC (1969) Estimation of surface free energy of polymers. J Appl Polym Sci 13:1741–1747

    Article  CAS  Google Scholar 

  61. Żenkiewicz M (2007) Methods for the calculation of surface free energy of solids. J Achiev Mater Manuf Eng 24:137–145

    Google Scholar 

  62. Żenkiewicz M (2007) Comparative study on the surface free energy of a solid calculated by different methods. Polym Test 26:14–19

    Article  Google Scholar 

  63. Kwok DY, Neumann AW (1999) Contact angle measurement and contact angle interpretation. Adv Colloid Interface Sci 81:167–249

    Article  CAS  Google Scholar 

  64. Chibowski E, Perea-Carpio R (2002) Problems of contact angle and solid surface free energy determination. Adv Colloid Interface Sci 98:245–264

    Article  CAS  Google Scholar 

  65. Tavana H, Neumann AW (2007) Recent progress in the determination of solid surface tensions from contact angles. Adv Colloid Interface Sci 132:1–32

    Article  CAS  Google Scholar 

  66. Della Volpe C, Maniglio D, Brugnara M, Siboni S, Morra M (2004) The solid surface free energy calculation I. In defense of the multicomponent approach. J Colloid Interface Sci 271:434–453

    Article  Google Scholar 

  67. Siboni S, Della Volpe C, Maniglio D, Brugnara M (2004) The solid surface free energy calculation II. The limits of the Zisman and of the “equation-of-state” approaches. J Colloid Interface Sci 271:454–472

    Article  CAS  Google Scholar 

  68. Rudawska A, Jacniacka E (2009) Analysis for determining surface free energy uncertainty by the Owen–Wendt method. Int J Adhes Adhes 29:451–457

    Article  CAS  Google Scholar 

  69. Meloun M, Militký J (2004) Statistical analysis of experimental data. 2nd edn. Academia, Prague, Czech.

    Google Scholar 

  70. Kluvanek I, Mišík L, Švec M (1971) Mathematics I. Alfa, Bratislava, Slovakia, p 666–679

  71. McQuarrie A, Tsai ChL (1999) Model selection in orthogonal regression. Stat Probab Lett 45:341–349

    Article  Google Scholar 

  72. Johnson JB, Omland KS (2004) Model selection in ecology and evolution. Trends Ecol Evol 19:101–108

    Article  Google Scholar 

  73. Castle JL, Qin X, Reed WR (2013) Using model selection algorithms to obtain reliable coefficient estimates. J Econ Surv 27:269–296

    Article  Google Scholar 

  74. Akaike H (1973) Information theory and an extension of maximum likelihood principle. In: Petrov BN, Csáki F (eds.) 2nd International Symposium on Information Theory, Akademia Kiado, Budapest, p 267–281

  75. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control AC 19:716–723

    Article  Google Scholar 

  76. Cavanaugh JE (2004) Criteria for linear model selection based on Kullback’s symmetric divergence. Aust N Y J Stat 46:257–274

    Article  Google Scholar 

  77. Kim HJ, Cavanaugh JE (2005) Model selection criteria based on Kullback information measures for nonlinear regression. J Stat Plan Infer 134:332–349

    Article  Google Scholar 

  78. Emiliano PC, Vivanco MJF, de Menezes FS (2014) Information criteria: How do they behave in different models? Comput Stat Data An 69:141–153

    Article  Google Scholar 

  79. Yates D, Moore DS, McCabe GP (1999) The practice of statistics, 1st edn. Freeman, New York

    Google Scholar 

  80. Snedecor GW, Cochran WG (1989) Statistical methods, 8th edn. Iowa State University Press, Ames

    Google Scholar 

Download references

Acknowledgements

The research in this publication was supported by the project VEGA 1/0431/18 of the Grant Agency of the Slovak Republic, and the project “Centre of excellence for ceramics, glass, and silicate materials” ITMS code 262 201 20056.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jana Pagáčová.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Čierniková, M., Balážová, P., Plško, A. et al. Relation between chemical composition of sols and surface free energy of inorganic-organic films. J Sol-Gel Sci Technol 88, 497–507 (2018). https://doi.org/10.1007/s10971-018-4856-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-018-4856-y

Keywords

Navigation