Skip to main content
Log in

Mg2−xMn x SiO4 compound obtained via sol–gel method: structural, morphological and electrochemical properties

  • Original Paper: Characterization methods of sol-gel and hybrid materials
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Prospective cathode materials Mg2-xMn x SiO4 (0.0 ≤ x ≤ 0.4) for magnesium-ion secondary battery were synthesized using sol gel method. Crystalline structure, morphology, particle size, electrical and electrochemical properties of the samples were investigated. X-ray diffraction patterns of the materials exhibited no extra peak for x ≤ 0.6 indicated that Mg2-xMn x SiO4 materials were successfully synthesized. Mn doping in magnesium site did not affect the formation of single phase, and this probably due to the low concentration of Mn to induces structural changes. Mn doping contributed to the enhancement of the electrochemical performance of Mg2SiO4. For this work, Mg1.4Mn0.6SiO4 which possesses the largest unit cell volume, smallest charge transfer resistance, and highest conductivity value showed the most promising electrochemical performance compared to the other samples. These results indicated the suitability of the Mg2-xMn x SiO4 to be exploiting further for potential applications as solid electrolytes in electrochemical devices and strengthen the fact that doping could be an effective way to enhanched the structural, electrical and electrochemical performance of materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Padhi AK, Nanjundaswamy K, Goodenough J (1997) Phospho‐olivines as positive‐electrode materials for rechargeable lithium batteries. J Electrochem Soc 144(4):1188–1194

    Article  Google Scholar 

  2. Kandhasamy S, Nallathamby K, Minakshi M (2012) Role of structural defects in olivine cathodes. Progress Solid State Chem 40(1):1–5

    Article  Google Scholar 

  3. Wu B, Ren Y, Li N (2011) LiFePO4 cathode material. In: Electric vehicles—the benefits and barriers. InTech

  4. Zhang W-J (2011) Structure and performance of LiFePO4 cathode materials: a review. J Power Sources 196(6):2962–2970

    Article  Google Scholar 

  5. Padhi AK, Nanjundaswamy K, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144(4):1188–1194

    Article  Google Scholar 

  6. Tavangarian F, Emadi R (2009) Mechanical activation assisted synthesis of pure nanocrystalline forsterite powder. J Alloy Compd 485(1):648–652

    Article  Google Scholar 

  7. Kharaziha M, Fathi M (2009) Synthesis and characterization of bioactive forsterite nanopowder. Ceram Int 35(6):2449–2454

    Article  Google Scholar 

  8. Saberi A, Negahdari Z, Alinejad B, Golestani-Fard F (2009) Synthesis and characterization of nanocrystalline forsterite through citrate–nitrate route. Ceram Int 35(4):1705–1708

    Article  Google Scholar 

  9. Liu B, Luo T, Mu G, Wang X, Chen D, Shen G (2013) Rechargeable Mg-ion batteries based on WSe2 nanowire cathodes. ACS Nano 7(9):8051–8058

    Article  Google Scholar 

  10. Yoo HD, Shterenberg I, Gofer Y, Gershinsky G, Pour N, Aurbach D (2013) Mg rechargeable batteries: an on-going challenge. Energy Environ Sci 6(8):2265–2279

    Article  Google Scholar 

  11. Huie MM, Bock DC, Takeuchi ES, Marschilok AC, Takeuchi KJ (2015) Cathode materials for magnesium and magnesium-ion based batteries. Coord Chem Rev 287:15–27

    Article  Google Scholar 

  12. Novák P, Scheifele W, Haas O (1995) Magnesium insertion batteries—an alternative to lithium? J Power Sources 54(2):479–482

    Article  Google Scholar 

  13. Aurbach D, Lu Z, Schechter A, Gofer Y, Gizbar H, Turgeman R, Cohen Y, Moshkovich M, Levi E (2000) Prototype systems for rechargeable magnesium batteries. Nature 407(6805):724–727

    Article  Google Scholar 

  14. Mizrahi O, Amir N, Pollak E, Chusid O, Marks V, Gottlieb H, Larush L, Zinigrad E, Aurbach D (2008) Electrolyte solutions with a wide electrochemical window for rechargeable magnesium batteries. J Electrochem Soc 155(2):A103–A109

    Article  Google Scholar 

  15. Aurbach D, Weissman I, Gofer Y, Levi E (2003) Nonaqueous magnesium electrochemistry and its application in secondary batteries. Chem Rec 3(1):61–73

    Article  Google Scholar 

  16. NuLi Y, Yang J, Li Y, Wang J (2010) Mesoporous magnesium manganese silicate as cathode materials for rechargeable magnesium batteries. Chem Commun 46(21):3794–3796

    Article  Google Scholar 

  17. Feng Z, NuLi Y, Wang J, Yang J (2006) Study of key factors influencing electrochemical reversibility of magnesium deposition and dissolution. J Electrochem Soc 153(10):C689–C693

    Article  Google Scholar 

  18. NuLi Y, Yang J, Li Y, Feng Z, Wang J (2008) Molten salt synthesis of MgMnSiO4 for rechargeable magnesium battery cathode. Meet Abstr 4:450–450. The Electrochemical Society

    Google Scholar 

  19. Feng Z, Yang J, NuLi Y, Wang J, Wang X, Wang Z (2008) Preparation and electrochemical study of a new magnesium intercalation material Mg1.03Mn0.97SiO 4. Electrochem Commun 10(9):1291–1294

    Article  Google Scholar 

  20. NuLi Y, Yang J, Wang J, Li Y (2009) Electrochemical intercalation of Mg2+ in magnesium manganese silicate and its application as high-energy rechargeable magnesium battery cathode. J Phys Chem C 113(28):12594–12597

    Article  Google Scholar 

  21. Zhang S, Huang Y, Kai W, Shi L, Seo HJ (2010) Tunable red luminescence of Mn2+-doped NaCaPO4 phosphors. Electrochem Solid-State Lett 13(2):J11–J14

    Article  Google Scholar 

  22. Wang B, Xu B, Liu T, Liu P, Guo C, Wang S, Wang Q, Xiong Z, Wang D, Zhao X (2014) Mesoporous carbon-coated LiFePO4 nanocrystals co-modified with graphene and Mg2+ doping as superior cathode materials for lithium ion batteries. Nanoscale 6(2):986–995

    Article  Google Scholar 

  23. Levi E, Gofer Y, Vestfreed Y, Lancry E, Aurbach D (2002) Cu2Mo6S8 chevrel phase, a promising cathode material for new rechargeable Mg batteries: a mechanically induced chemical reaction. Chem Mater 14(6):2767–2773

    Article  Google Scholar 

  24. Adnan SBRS, Mohamed NS (2012) Conductivity and dielectric studies of Li2ZnSiO4 ceramic electrolyte synthesized via citrate sol gel method. Int J Electrochem Sci 7:9844–9858

    Google Scholar 

  25. Mustaffa NA, Mohamed NS (2016) Zirconium-substituted LiSn2P3O12 solid electrolytes prepared via sol–gel method. J Sol–Gel Sci Technol 77(3):585–593

    Article  Google Scholar 

  26. Tamin SH, Adnan SBRS, Jaafar MH, Mohamed NS (2017) Effects of sintering temperature on the structure and electrochemical performance of Mg2SiO4 cathode materials. Ionics 1–7

  27. Adnan SBRS, Mohamed NS (2014) Characterization of novel Li4Zr0.06Si0.94O4 and LI3.94Cr0.02 Zr0.06Si0.94 O4 ceramic electrolytes for lithium cells. Ceram Int 40(4):6373–6379

    Article  Google Scholar 

  28. Muraliganth T, Manthiram A (2010) Understanding the shifts in the redox potentials of olivine LiM1− yMyPO4 (M = Fe, Mn, Co, and Mg) solid solution cathodes. J Phys Chem C 114(36):15530–15540

    Article  Google Scholar 

  29. Huang Y-J, Gao D-S, Lei G-T, Li Z-H, Su G-Y (2007) Synthesis and characterization of Li(Ni1/3Co1/3Mn1/3)0.96Si0.04O1.96F0.04 as a cathode material for lithium-ion battery. Mater Chem Phys 106(2):354–359

    Article  Google Scholar 

  30. Yang L, Jiao L, Miao Y, Yuan H (2010) Synthesis and characterization of LiFe0. 99Mn0. 01(PO4)2.99/3F0. 01/C as a cathode material for lithium-ion battery. J Solid State Electrochem 14(6):1001–1005

    Article  Google Scholar 

  31. Liu H, Li C, Cao Q, Wu Y, Holze R (2008) Effects of heteroatoms on doped LiFePO4/C composites. J Solid State Electrochem 12(7-8):1017–1020

    Article  Google Scholar 

  32. Saberi A, Alinejad B, Negahdari Z, Kazemi F, Almasi A (2007) A novel method to low temperature synthesis of nanocrystalline forsterite. Mater Res Bull 42(4):666–673

    Article  Google Scholar 

  33. Paques-Ledent MT, Tarte P (1973) Vibrational studies of olivine-type compounds—I. The i.r. and Raman spectra of the isotopic species of Mg2SiO4. Spectrochim Acta 29(6):1007–1016

    Article  Google Scholar 

  34. Mazza D, Lucco-Borlera M, Busca G, Delmastro A (1993) High-quartz solid-solution phases from xerogels with composition 2MgO·2Al2O3·5SiO2 (μ-Cordierite) and Li2O.Al2O3·nSiO2 (n = 2 to 4) (β-Eucryptite): characterization by XRD, FTIR and surface measurements. J Eur Ceram Soc 11(4):299–308. https://doi.org/10.1016/0955-2219(93)90029-Q

    Article  Google Scholar 

  35. Tsai M (2002) Hydrolysis and condensation of forsterite precursor alkoxides: modification of the molecular gel structure by acetic acid. J Non-Cryst Solids 298(2):116–130

    Article  Google Scholar 

  36. Shu H, Wang X, Wu Q, Hu B, Yang X, Wei Q, Liang Q, Bai Y, Zhou M, Wu C (2013) Improved electrochemical performance of LiFePO4/C cathode via Ni and Mn co-doping for lithium-ion batteries. J Power Sources 237:149–155

    Article  Google Scholar 

  37. Zou M, Yoshio M, Gopukumar S, Yamaki JI (2004) Synthesis and electrochemical performance of high voltage cycling LiM0.05Co0.95O2 as cathode material for lithium rechargeable cells. Electrochem Solid-State Lett 7(7):A176–A179. https://doi.org/10.1149/1.1738423

    Article  Google Scholar 

  38. Shaju KM, Subba Rao GV, Chowdari BVR (2002) Performance of layered Li(Ni1/3Co1/3Mn1/3)O2 as cathode for Li-ion batteries. Electrochim Acta 48(2):145–151. https://doi.org/10.1016/S0013-4686(02)00593-5

    Article  Google Scholar 

  39. Yang L, Jiao L, Miao Y, Yuan H (2010) Synthesis and characterization of LiFe0. 99Mn0. 01 (PO4)2.99/3F0. 01/C as a cathode material for lithium-ion battery. J Solid State Electrochem 14(6):1001–1005

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support by the University Malaya Research Grant, UMRG (RP013C-13AFR) and Postgraduate Research Grant, PPP (PG224-2015A). A highly gratitude goes to Ministry of Higher Education for scholarship My Brain15 awarded to Siti Hafizha.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. H. Tamin or N. S. Mohamed.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Highlights

  • Mg2-xMn x SiO4 compounds were successfully synthesized by using citric assisted sol-gel method followed by firing at temperature 1100 °C.

  • Elemental doping is an effective way to enhance the electrochemical properties of cathode materials. Mn was successfully doped into the orthorhombic structure; hence improve the structural properties of the materials.

  • Materials with largest unit cell volume, V and smallest Rct value owned preferable intercalation and deintercalation process.

  • Mg2-xMn x SiO4 materials have a bright future as cathode materials especially in Mg based electrochemical cell due to the present of polyanionic group which make it structurally stable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamin, S.H., Dzulkurnain, N.A., Adnan, S.B.R.S. et al. Mg2−xMn x SiO4 compound obtained via sol–gel method: structural, morphological and electrochemical properties. J Sol-Gel Sci Technol 86, 24–33 (2018). https://doi.org/10.1007/s10971-018-4612-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-018-4612-3

Keywords

Navigation