Skip to main content

Advertisement

Log in

Visible light photocatalytic activity of sol–gel Ni-doped TiO2 on p-arsanilic acid degradation

  • Original Paper: Sol-gel and hybrid materials for energy, environment and building applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Nickel-doped TiO2 (0.1, 0.5, 1.0, 2.5, 5.0, and 10.0 wt%) photocatalysts were prepared by the sol–gel method. Physicochemical properties were determined by the characterization using X-ray diffraction, Raman and UV–vis diffuse reflectance spectroscopies, N2 physisorption, and zeta potential determination (PZC). The synthesized materials exhibited the photocatalytically active anatase crystalline phase and the catalysts exhibited stronger absorption in the visible light region with a red shift in the adsorption edge with the increase of Ni doping. The photocatalytic evaluation of TiO2−Ni materials was carried out on p-arsanilic acid (p-ASA, 10 mg L−1) degradation in aqueous suspension under visible radiation. Compared with bare TiO2, the TiO2–Ni 1.0 material (1 wt% Ni-doped TiO2) exhibited higher photocatalytic activity on p-ASA degradation under visible light irradiation allowing a 76% degradation percentage in 180 min reaction time while 60% degradation percentage was achieved with undoped TiO2. The TiO2–Ni 1.0 material showed the highest surface area in comparison with the other prepared materials. Meanwhile, the photocatalytic activity of TiO2–Ni 1.0 can keep even after three cycles with not loss of activity since nickel was not leached from the TiO2-based catalyst into the solution during photocatalytic reaction. Therefore, the doping of the nickel into the TiO2 lattice by the sol–gel method allowed its activation under visible radiation and an efficient photoexcited charge separation to prevent electron-hole recombination showing high chemical stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Guzmán-Mar JL, Villanueva-Rodríguez M, Hinojosa-Reyes L (2015) Application of semiconductor photocatalytic materials for the removal of inorganic compounds from wastewater. In: Hernández-Ramírez A, Medina-Ramírez I (Eds.) Photocatalytic semiconductors: synthesis, characterization, and environmental applications. Springer International Publishing, Cham, pp 229–254

    Google Scholar 

  2. Singh R, Singh S, Parihar P, Singh VP, Prasad SM (2015) Arsenic contamination, consequences and remediation techniques: a review. Ecotoxicol Environ Saf 112:247–270

    Article  Google Scholar 

  3. Mitchell W, Goldberg S, Al-Abadleh HA (2011) In situ ATR–FTIR and surface complexation modeling studies on the adsorption of dimethylarsinic acid and p-arsanilic acid on iron-(oxyhydr)oxides. J Colloid Interface Sci 358:534–540

    Article  Google Scholar 

  4. Mangalgiri KP, Adak A, Blaney L (2015) Organoarsenicals in poultry litter: detection, fate, and toxicity. Environ Int 75C:68–80

    Article  Google Scholar 

  5. Chen WR, Huang CH (2012) Surface adsorption of organoarsenic roxarsone and arsanilic acid on iron and aluminum oxides. J Hazard Mater 227-228:378–385

    Article  Google Scholar 

  6. Zhu XD, Wang YJ, Liu C, Qin WX, Zhou DM (2014) Kinetics, intermediates and acute toxicity of arsanilic acid photolysis. Chemosphere 107:274–281

    Article  Google Scholar 

  7. Khaki MRD, Shafeeyan MS, Raman AAA, Daud W (2017) Application of doped photocatalysts for organic pollutant degradation—a review. J Environ Manag 198:78–94

    Article  Google Scholar 

  8. Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PSM, Hamilton JWJ, Byrne JA, O’Shea K, Entezari MH, Dionysiou DD (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B: Environ 125:331–349

    Article  Google Scholar 

  9. Zheng S, Jiang W, Cai Y, Dionysiou DD, O’Shea KE (2014) Adsorption and photocatalytic degradation of aromatic organoarsenic compounds in TiO2 suspension. Catal Today 224:83–88

    Article  Google Scholar 

  10. Zheng S, Cai Y, O’Shea KE (2010) TiO2 photocatalytic degradation of phenylarsonic acid. J Photochem Photobiol A Chem 210:61–68

    Article  Google Scholar 

  11. Kim J, Kim J (2014) Arsenite oxidation-enhanced photocatalytic degradation of phenolic pollutants on platinized TiO2. Environ Sci Technol 48:13384–13391

    Article  Google Scholar 

  12. Lu D, Ji F, Wang F, Yuan S, Hu ZH, Chen T (2014) Adsorption and photocatalytic decomposition of roxarsone by TiO2 and its mechanism. Environ Sci Pollut Res Int 21:8025–8035

    Article  Google Scholar 

  13. Zhang G, Sun M, Liu Y, Lang X, Liu L, Liu H, Qu J, Li J (2015) Visible-light induced photocatalytic activity of electrospun-TiO2 in arsenic(III) oxidation. ACS Appl Mater Interfaces 7:511–518

    Article  Google Scholar 

  14. Garza-Arévalo JI, García-Montes I, Reyes MH, Guzmán-Mar JL, Rodríguez-González V, Reyes LH (2016) Fe doped TiO2 photocatalyst for the removal of As(III) under visible radiation and its potential application on the treatment of As-contaminated groundwater. Mater Res Bull 73:145–152

    Article  Google Scholar 

  15. Guan X, Du J, Meng X, Sun Y, Sun B, Hu Q (2012) Application of titanium dioxide in arsenic removal from water: A review. J Hazard Mater 215-216:1–16

    Article  Google Scholar 

  16. Su H, Lv X, Zhang Z, Yu J, Wang T (2017) Arsenic removal from water by photocatalytic functional Fe2O3–TiO2 porous ceramic. J Porous Mater 24:1227–1235

    Article  Google Scholar 

  17. Sang Y, Zhao Z, Zhao M, Hao P, Leng Y, Liu H, From (2015) UV to near-infrared, WS2 nanosheet: a novel photocatalyst for full solar light spectrum photodegradation. Adv Mater 27:363–369

    Article  Google Scholar 

  18. Di Paola A, Garcı́a-López E, Ikeda S, Marcı̀ G, Ohtani B, Palmisano L (2002) Photocatalytic degradation of organic compounds in aqueous systems by transition metal doped polycrystalline TiO2. Catal Today 75:87–93

    Article  Google Scholar 

  19. Daghrir R, Drogui P, Robert D (2013) Modified TiO2 for environmental photocatalytic applications: a review. Ind Eng Chem Res 52:3581–3599

    Article  Google Scholar 

  20. Gupta S, Tripathi M (2012) A review on the synthesis of TiO2 nanoparticles by solution route. Open Chem 10:279–294

    Article  Google Scholar 

  21. Ganesh I, Gupta AK, Kumar PP, Sekhar PS, Radha K, Padmanabham G, Sundararajan G (2012) Preparation and characterization of Ni-doped TiO2 materials for photocurrent and photocatalytic applications. Sci World J 2012:127326

    Article  Google Scholar 

  22. Kumar RS, Dananjaya SHS, De Zoysa M, Yang M (2016) Enhanced antifungal activity of Ni-doped ZnO nanostructures under dark conditions. RSC Adv 6:108468–108476

    Article  Google Scholar 

  23. Gomathi Devi L, Kottam N, Girish Kumar S, Eraiah Rajashekhar K (2010) Preparation, characterization and enhanced photocatalytic activity of Ni2+ doped titania under solar light. Open Chem 8:142–148

    Article  Google Scholar 

  24. Chen C-Y, Hsu L-J (2015) Kinetic study of self-assembly of Ni(II)-doped TiO2 nanocatalysts for the photodegradation of azo pollutants. RSC Adv 5:88266–88271

    Article  Google Scholar 

  25. Haque MM, Khan A, Umar K, Mir NA, Muneer M, Harada T, Matsumura M (2013) Synthesis, characterization and photocatalytic activity of visible light induced Ni-doped TiO2. Energy Environ Focus 2:73–78

    Article  Google Scholar 

  26. Marathe SD, Shrivastava VS (2014) Photocatalytic removal of hazardous Ponceau S dye using nano structured Ni-doped TiO2 thin film prepared by chemical method. Appl Nanosci 5:229–234

    Article  Google Scholar 

  27. Nakhate GG, Nikam VS, Kanade KG, Arbuj S, Kale BB, Baeg JO (2010) Hydrothermally derived nanosized Ni-doped TiO2: a visible light driven photocatalyst for methylene blue degradation. Mater Chem Phys 124:976–981

    Article  Google Scholar 

  28. Begum NS, Farveez Ahmed HM, Gunashekar KR (2008) Effects of Ni doping on photocatalytic activity of TiO2 thin films prepared by liquid phase deposition technique. Bull Mater Sci 31:747–751

    Article  Google Scholar 

  29. Tseng H-H, Wei M-C, Hsiung S-F, Chiou C-W (2009) Degradation of xylene vapor over Ni-doped TiO2 photocatalysts prepared by polyol-mediated synthesis. Chem Eng J 150:160–167

    Article  Google Scholar 

  30. Khan R, Kim TJ (2009) Preparation and application of visible-light-responsive Ni-doped and SnO2-coupled TiO2 nanocomposite photocatalysts. J Hazard Mater 163:1179–1184

    Article  Google Scholar 

  31. Zhang X, Liu Q (2008) Visible-light-induced degradation of formaldehyde over titania photocatalyst co-doped with nitrogen and nickel. Appl Surf Sci 254:4780–4785

    Article  Google Scholar 

  32. Singla P, Pandey OP, Singh K (2015) Study of photocatalytic degradation of environmentally harmful phthalate esters using Ni-doped TiO2 nanoparticles. Int J Environ Sci Technol 13:849–856

    Article  Google Scholar 

  33. Hinojosa-Reyes M, Arriaga S, Diaz-Torres LA, Rodríguez-González V (2013) Gas-phase photocatalytic decomposition of ethylbenzene over perlite granules coated with indium doped TiO2. Chem Eng J 224:106–113

    Article  Google Scholar 

  34. López R, Gómez R (2011) Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: a comparative study. J Sol Gel Sci Technol 61:1–7

    Article  Google Scholar 

  35. Babić BM, Milonjić SK, Polovina MJ, Kaludierović BV (1999) Point of zero charge and intrinsic equilibrium constants of activated carbon cloth. Carbon N Y 37:477–481

    Article  Google Scholar 

  36. Leyva Ramos R, Díaz Flores PE, Guerrero Coronado RM, Mendoza Barrón J (2004) A. Aragón Piña, Adsorción de Cd(II) en solución acuosa sobre diferentes tipos de fibras de carbón activado. J Mex Chem Soc 48:196–201

    Google Scholar 

  37. Chen D, Zhang H, Tao Y, Wang Y, Huang L, Liu Z, Pan Y, Peng D, Wang X, Dai M, Yuan Z (2011) Development of a high-performance liquid chromatography method for the simultaneous quantification of four organoarsenic compounds in the feeds of swine and chicken. J Chromatogr B Anal Technol Biomed Life Sci 879:716–720

    Article  Google Scholar 

  38. Kakegawa K, Mohri J, Shirasaki S, Takahashi K (1982) Sluggish pansitionbetween tetragonal and rhombohedral phases of Pb(Zr,Ti)03 prepared by application of electric field. J Am Ceram Soc 65:515–519

    Article  Google Scholar 

  39. Hinojosa-Reyes M, Zanella R, Maturano-Rojas V, Rodríguez-González V (2016) Gold-TiO2-nickel catalysts for low temperature-driven CO oxidation reaction. Appl Surf Sci 368:224–232

    Article  Google Scholar 

  40. Ohsaka T, Izumi F, Fujiki Y (1978) Raman spectrum of anatase TiO2. J Raman Spectrosc 7:321–324

    Article  Google Scholar 

  41. Zhu J, Ren J, Huo Y, Bian Z, Li H (2007) Nanocrystalline Fe/TiO2 visible photocatalyst with a mesoporous structure prepared via a nonhydrolytic sol−gel route. J Phys Chem C 111:18965–18969

    Article  Google Scholar 

  42. Lopes KP, Cavalcante LS, Simões AZ, Varela JA, Longo E, Leite ER (2009) NiTiO3 powders obtained by polymeric precursor method: synthesis and characterization. J Alloy Compd 468:327–332

    Article  Google Scholar 

  43. Zhao W, Ma W, Chen C, Zhao J, Shuai Z (2004) Efficient degradation of toxic organic pollutants with Ni2O3/TiO2-xBx under visible irradiation. J Am Chem Soc 126:4782–4783

    Article  Google Scholar 

  44. Lin Y-J, Chang Y-H, Yang W-D, Tsai B-S (2006) Synthesis and characterization of ilmenite NiTiO3 and CoTiO3 prepared by a modified Pechini method. J Non Cryst Solids 352:789–794

    Article  Google Scholar 

  45. Khojasteh H, Salavati-Niasari M, Mortazavi-Derazkola S (2015) Synthesis, characterization and photocatalytic properties of nickel-doped TiO2 and nickel titanate nanoparticles. J Mater Sci Mater Electron 27:3599–3607

    Article  Google Scholar 

  46. Hyun Kim D, Sub Lee K, Kim Y-S, Chung Y-C, Kim S-J (2006) Photocatalytic activity of Ni 8 wt%-doped TiO2 photocatalyst synthesized by mechanical alloying under visible light. J Am Ceram Soc 89:515–518

    Article  Google Scholar 

  47. Kuo C-Y, Wu C-H, Lin H-Y (2010) Photocatalytic degradation of bisphenol A in a visible light/TiO2 system. Desalination 256:37–42

    Article  Google Scholar 

  48. Xu T, Cai Y, O’Shea KE (2007) Adsorption and photocatalyzed oxidation of methylated arsenic species in TiO2 suspensions. Environ Sci Technol 41:5471–5477

    Article  Google Scholar 

  49. Xu T, Kamat PV, Joshi S, Mebel AM, Cai Y, O’Shea KE (2007) Hydroxyl radical mediated degradation of phenylarsonic acid. J Phys Chem A 111:7819–7824

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from PAICYT UANL and Facultad de Ciencias Químicas, UANL. We also thank the LINAN-IPICyT for the equipment and infrastructure provided. We wish to thank MC Beatriz Adriana Rivera Escoto and PhD Roberto Camposeco Solis for their valuable support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Hinojosa-Reyes.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vega, M.P.B., Hinojosa-Reyes, M., Hernández-Ramírez, A. et al. Visible light photocatalytic activity of sol–gel Ni-doped TiO2 on p-arsanilic acid degradation. J Sol-Gel Sci Technol 85, 723–731 (2018). https://doi.org/10.1007/s10971-018-4579-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-018-4579-0

Keywords

Navigation