Skip to main content
Log in

Synthesis, structural and electrical properties of spinel LiNi0.5Mn1.5O4 synthesized by sol–gel method

  • Original Paper: Sol-gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this present work, we have discussed about the synthesis of LiNi0.5Mn1.5O4 by microwave-assisted sol–gel method using glycine as a chelating agent. The structural, morphological and chemical compositions of the synthesized material are confirmed using XRD, SEM with EDX and ICP, respectively. Dielectric measurements are analyzed in the frequency range of 50 Hz to 5 MHz under the temperature between 308 and 783 K. Nyquist plot observed the non-Debye type-behavior and analyzed the individual contribution of grain, grain boundary and interfacial effect in the material. Activation energy from the Arrhenius plot and the relaxation time from the impedance spectroscopy have been analyzed. Conductivity shows the two distinct dispersion regions analyzed with jump relaxation model.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Xu X, Lee S, Jeong S, Kim Y, Cho J (2013) Recent progress on nanostructured 4 V cathode materials for Li-ion batteries for mobile electronics. Mater Today 16(12):487–495. doi:10.1016/j.mattod.2013.11.021

    Article  Google Scholar 

  2. Arrebola JC, Caballero A, Cruz M, Hernan L, Morales J, Castellon ER (2006) Crystallinity control of a nanostructured LiNi0.5Mn1.5O4 spinel via polymer-assisted synthesis: a method for improving its rate capability and performance in 5 V lithium batteries. Adv Funct Mater 16(14):1904–1912. doi:10.1002/adfm.200500892

    Article  Google Scholar 

  3. Wang H, Xia H, Lai MO, Lu L (2009) Enhancements of rate capability and cyclic performance of spinel LiNi0.5Mn1.5O4 by trace Ru-doping. Electrochem Commun 11(7):1539–1542. doi:10.1016/j.elecom.2009.05.054

    Article  Google Scholar 

  4. Chae JS, Jo MR, Kim YI, Han DW, Park SM, Kang YM, Roh KC (2015) Kinetic favorability of Ru-doped LiNi0.5Mn1.5O4 for high-power lithium-ion batteries. J Ind Eng Chem 21:731–735. doi:10.1016/j.jiec.2014.04.003

    Article  Google Scholar 

  5. Dygas JR, Kopec M, Krok F, Lisovytskiy D, Pielaszek J (2005) Conductivity and dielectric relaxation phenomena in lithium manganese spinel. Solid State Ion 176(25):2153–2161. doi:10.1016/j.ssi.2005.01.012

    Article  Google Scholar 

  6. Lungu A, Malaescu I, Marin CN, Vlazan P, Sfirloaga P (2015) The electrical properties of manganese ferrite powders prepared by two different methods. Phys B 462:80–85. doi:10.1016/j.physb.2015.01.025

    Article  Google Scholar 

  7. Pelaiz-Barranco A, Guerra JDS (2010) Dielectric relaxation related to single-ionized oxygen vacancies in (Pb1−x La x )(Zr0.90Ti0.10)1−x/4O3 ceramics. Mater Res Bull 45(9):1311–1313. doi:10.1016/j.materresbull.2010.04.026

    Article  Google Scholar 

  8. Elissalde C, Ravez J (2001) Ferroelectric ceramics: defects and dielectric relaxations. J Mater Chem 11(8):1957–1967. doi:10.1039/b010117f

    Article  Google Scholar 

  9. Padmaraj O, Venkateswarlu M, Satyanarayana N (2015) Structural, electrical and dielectric properties of spinel type MgAl2O4 nanocrystalline ceramic particles synthesized by the gel-combustion method. Ceram Int 41(2):3178–3185. doi:10.1016/j.ceramint.2014.10.169

    Article  Google Scholar 

  10. Rao BN, Padmaraj O, Narsimulu D, Venkateswarlu M, Satyanarayana N (2015) AC conductivity and dielectric properties of spinel LiMn2O4 nanorods. Ceram Int 41(10):14070–14077. doi:10.1016/j.ceramint.2015.07.026

    Article  Google Scholar 

  11. Balke N, Kalnaus S, Dudney NJ, Daniel C, Jesse S, Kalinin SV (2012) Local detection of activation energy for ionic transport in lithium cobalt oxide. Nano Lett 12(7):3399–3403. doi:10.1021/nl300219g

    Article  Google Scholar 

  12. Wang S, Chen L (2015) Interfacial transport in lithium-ion conductors. Chin Phys B 25(1):018202. doi:10.1088/1674-1056/25/1/018202

    Article  Google Scholar 

  13. Park M, Zhang X, Chung M, Less GB, Sastry AM (2010) A review of conduction phenomena in Li-ion batteries. J Power Sources 195(24):7904–7929. doi:10.1016/j.jpowsour.2010.06.060

    Article  Google Scholar 

  14. Liu X, Li D, Mo Q, Guo X, Yang X, Chen G, Zhong S (2014) Facile synthesis of aluminum-doped LiNi0.5Mn1.5O4 hollow microspheres and their electrochemical performance for high-voltage Li-ion batteries. J Alloys Compd 609:54–59. doi:10.1016/j.jallcom.2014.03.102

    Article  Google Scholar 

  15. Langford JI, Wilson AJC (1978) Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J Appl Crystallogr 11(2):102–113. doi:10.1107/S0021889878012844

    Article  Google Scholar 

  16. Wang WN, Widiyastuti W, Ogi T, Lenggoro IW, Okuyama K (2007) Correlations between crystallite/particle size and photoluminescence properties of sub-micrometer phosphors. Chem Mater 19(7):1723–1730. doi:10.1021/cm062887p

    Article  Google Scholar 

  17. Sawant VS, Bagade AA, Rajpure KY (2015) Studies on structural and electrical properties of Li0.5−0.5x Co x Fe2.5−0.5x O4 (0 ≤ x ≤ 0.6) spinel ferrite. Phys B 474:47–52. doi:10.1016/j.physb.2015.06.005

    Article  Google Scholar 

  18. Rosaiah P, Hussain OM (2013) Synthesis, electrical and dielectrical properties of lithium iron oxide. Adv Mater Lett 4:288–295. doi:10.5185/amlett.2012.8416

    Article  Google Scholar 

  19. Prabu M, Selvasekarapandian S, Kulkarni AR, Hirankumar G, Sakunthala A (2010) Ionic conductivity studies on LiSmO2 by impedance spectroscopy. Ionics 16(4):317–321. doi:10.1007/s11581-010-0420-7

    Article  Google Scholar 

  20. Adem U, Mufti N, Nugroho AA, Catalan G, Noheda B, Palstra TTM (2015) Dielectric relaxation in YMnO3 single crystals. J Alloys Compd 638:228–232. doi:10.1016/j.jallcom.2015.02.207

    Article  Google Scholar 

  21. Wang CC, Lei CM, Wang GJ, Sun XH, Li T, Huang SG, Wang H, Li YD (2013) Oxygen-vacancy-related dielectric relaxations in SrTiO3 at high temperatures. J Appl Phys 113(9):094103. doi:10.1063/1.4794349

    Article  Google Scholar 

  22. Tamilselvan A, Balakumar S, Sakar M, Nayek C, Murugavel P, Kumar KS (2014) Role of oxygen vacancy and Fe–O–Fe bond angle in compositional, magnetic, and dielectric relaxation on Eu-substituted BiFeO3 nanoparticles. Dalton Trans 43(15):5731–5738. doi:10.1039/C3DT52260A

    Article  Google Scholar 

  23. Louati B, Guidara K (2011) Dielectric relaxation and ionic conductivity studies of LiCaPO4. Ionics 17(7):633–640. doi:10.1007/s11581-011-0555-1

    Article  Google Scholar 

  24. Kumari N, Kumar V, Singh SK (2015) Structural, dielectric and magnetic investigations on Al3+ substituted Zn-ferrospinels. RSC Adv 5(47):37925–37934. doi:10.1039/C5RA03745J

    Article  Google Scholar 

  25. Verdier C, Morrison FD, Lupascu DC, Scott JF (2005) Fatigue studies in compensated bulk lead zirconate titanate. J Appl Phys 97(2):024107. doi:10.1063/1.1829790

    Article  Google Scholar 

  26. Dar MA, Majid K, Batoo KM, Kotnala RK (2015) Dielectric and impedance study of polycrystalline Li0.35−0.5X Cd0.3Ni X Fe2.35−0.5X O4 ferrites synthesized via a citrate-gel auto combustion method. J Alloys Compd 632:307–320. doi:10.1016/j.jallcom.2015.01.190

    Article  Google Scholar 

Download references

Acknowledgments

Authors are grateful to VIT University for providing major financial support and excellent research facilities. The authors also thank Prof. S. Kalainathan, VIT University for providing the facilities to carry out dielectric studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ruban Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lobo, L.S., Kumar, A.R. Synthesis, structural and electrical properties of spinel LiNi0.5Mn1.5O4 synthesized by sol–gel method. J Sol-Gel Sci Technol 80, 821–826 (2016). https://doi.org/10.1007/s10971-016-4150-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-4150-9

Keywords

Navigation