Skip to main content
Log in

Agglomeration-free silica NPs in dry storage for PBT nanocomposite

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Dispersion of nanoparticles actually plays a key role in preparing high-performance nanocomposites. Within sol–gel procedures, the Stöber method is widely used to produce monodisperse systems of silica particles with controlled size and morphology. However, if stored as dried, the Stöber silica nanoparticles form stable agglomerates that no longer resuspend. Herein, we propose a novel straightforward methodology that overcomes the irreversible aggregation of particles, ultimately leading to a very good dispersion of the filler within the polymeric matrix without any coupling agent, even long time after their preparation. This synthesis approach has been exploited to produce PBT/SiO2 nanocomposites, as a model system. The produced nanocomposites have been analyzed and characterized by multiple techniques proving a fine dispersion of the filler within the matrix, as well as a significant increase in both thermal and dynamic mechanical properties. The proposed strategy ensures high compatibility with current industrial compounding facilities and far-reaching implementation in the preparation of polymer nanocomposites.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sinha Ray S, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641

    Article  Google Scholar 

  2. Leszczyńska A, Njuguna J, Pielichowski K, Banerjee J (2007) Polymer/montmorillonite nanocomposites with improved thermal properties: part I. Factors influencing thermal stability and mechanisms of thermal stability improvement. Thermochim Acta 453:75–96

    Article  Google Scholar 

  3. Leszczyńska A, Njuguna J, Pielichowski K, Banerjee JR (2007) Polymer/montmorillonite nanocomposites with improved thermal properties: part II. Thermal stability of montmorillonite nanocomposites based on different polymeric matrixes. Thermochim Acta 454:1–22

    Article  Google Scholar 

  4. Pesetskii SS, Bogdanovich SP, Myshkin NK, Fric J (2007) Tribological behavior of nanocomposites produced by the dispersion of nanofillers in polymer melts. J Frict Wear 28:457–475

    Article  Google Scholar 

  5. Bhat G, Hegde RR, Kamath MG, Deshpande B (2008) Nanoclay reinforced fibers and nonwovens. J Eng Fiber Fabric 3:22–34

    Google Scholar 

  6. Njuguna J, Pielichowski K, Desai S (2008) Nanofiller fibre-reinforced polymer nanocomposites. Polym Adv Technol 19:947–959

    Article  Google Scholar 

  7. Hajiraissi R, Parvinzadeh M (2011) Preparation of polybutylene terephthalate/silica nanocomposites by melt compounding: evaluation of surface properties. Appl Surf Sci 257:8443–8450

    Article  Google Scholar 

  8. Hong JS, Namkung H, Ahn KH, Lee SJ, Kim C (2006) The role of organically modified layered silicate in the breakup and coalescence of droplets in PBT/PE blends. Polymer 47:3967–3975

    Article  Google Scholar 

  9. Xiao JF, Hu Y, Wang ZZ, Tang Y, Chen ZY, Fan WC (2005) Preparation and characterization of poly(butylene terephthalate) nanocomposites from thermally stable organic-modified montmorillonite. Eur Polym J 41:1030–1035

    Article  Google Scholar 

  10. Li XC, Kang TK, Cho WJ, Lee JK, Ha CS (2001) Preparation and characterization of poly(butyleneterephthalate)/organoclay nanocomposites. Macromol Rapid Commun 22:1306–1312

    Article  Google Scholar 

  11. Nogales A, Broza G, Roslaniec Z, Schulte K, Sics I, Hsiao BS, Sanz A, Garcia-Gutierrez MC, Rueda DR, Domingo C, Ezquerra TA (2004) Low percolation threshold in nanocomposites based on oxidized single wall carbon nanotubes and poly(butylene terephthalate). Macromolecules 37:7669–7672

    Article  Google Scholar 

  12. Broza G, Kwiatkowska M, Roslaniec Z, Schulte K (2005) Processing and assessment of poly(butylene terephthalate) nanocomposites reinforced with oxidized single wall carbon nanotubes. Polymer 46:5860–5867

    Article  Google Scholar 

  13. Zhang L, Hong Y, Zhang T, Chunzhong L (2009) A novel approach to prepare PBT nanocomposites with elastomer-modified SiO2 particles. Polym Compos 30:673–679

    Article  Google Scholar 

  14. Zhang T, Zhang L, Li C (2011) Inhibited transesterification of poly(butylene terephthalate)/poly(ethylene terephthalate)/SiO2 nanocomposites by two processing methods. J Macromol Sci Phys 50:453–462

    Article  Google Scholar 

  15. Kim D, Lee JS, Barry CMF, Mead JL (2007) Effect of fill factor and validation of characterizing the degree of mixing in polymer nanocomposites. Polym Eng Sci 47:2049–2056

    Article  Google Scholar 

  16. Rahman IA, Padavettan V (2012) Synthesis of silica nanoparticles by sol–gel: size-dependent properties, surface modification and applications in silica-polymer nanocomposites: a review. J Nanomater 2012:1–15

    Article  Google Scholar 

  17. Luciani G, Costantini A, Silvestri B, Tescione F, Branda F, Pezzella A (2008) Synthesis, structure and bioactivity of pHEMA/SiO2 hybrids derived through in situ sol–gel process. J Sol–Gel Sci Technol 46:166–175

    Article  Google Scholar 

  18. Bogush GH, Zukosky CF (1991) Uniform silica particle precipitation: an aggregative growth model. J Colloid Interface Sci 142:19–34

    Article  Google Scholar 

  19. Lee K, Sathyagal AN, McCormick AV (1998) A closer look at an aggregation model of the Stöber process. Colloids Surf A 144:115–125

    Article  Google Scholar 

  20. Branda F, Silvestri B, Costantini A, Luciani G (2015) Effect of exposure to growth media on size and surface charge of silica based Stöber nanoparticles: a DLS and ζ -potential study. J Sol–Gel Sci Technol 73:54–61

    Article  Google Scholar 

  21. Branda F, Silvestri B, Costantini A, Luciani G (2015) The fate of silica based Stöber particles soaked into growth media (RPMI and M254): a DLS and ξ-potential study. Colloids Surf B: Biointerfaces. doi:10.1016/j.colsurfb.2015.03.033

    Google Scholar 

  22. Rahman IA, Vejayakumaran P, Sipaut CS, Ismail J, Chee CK (2008) Effect of the drying techniques on the morphology of silica nanoparticles synthesized via sol–gel process. Ceram Int 34:2059–2066

    Article  Google Scholar 

  23. Hench LL, West JK (1990) The sol–gel process. Chem Rev 90:33–72

    Article  Google Scholar 

  24. Brinker CJ, Scherer GW (1990) Sol–gel science: the physics and chemistry of sol–gel processing. Academic Press, San Diego

    Google Scholar 

  25. Stöber W, Fink A (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69

    Article  Google Scholar 

  26. Illers KH (1980) Heat of fusion and specific volume of poly(ethylene terephthalate) and poly(butylenes terephthalate. Colloid Polym Sci 258:117–123

    Article  Google Scholar 

  27. Che J, Xiao Y, Luan B, Dong X, Wang X (2007) Surface structure, grafted chain length, and dispersion analysis of PBT prepolymer grafted nano-silica. J Mater Sci 42:4967–4975

    Article  Google Scholar 

  28. Deshmukh GS, Peshwe DR, Pathak SU, Ekhe JD (2014) Nonisothermal crystallization kinetics and melting behavior of poly(butylene terephthalate) (PBT) composites based on different types of functional fillers. Thermochim Acta 581:41–53

    Article  Google Scholar 

  29. Ohtsuki C, Kokubo T, Yamamuro T (1992) Mechanism of apatite formation on CaO–SiO2–P2O5 glasses in a simulated body fluid. J Non-Cryst Solids 143:84–92

    Article  Google Scholar 

  30. Kim CY, Clark AE, Hench LL (1989) Early stages of calcium-phosphate layer formation in bioglasses. J Non-Cryst Solids 113:195–202

    Article  Google Scholar 

  31. Costantini A, Luciani G, Annunziata G, Silvestri B, Branda F (2006) Swelling properties and bioactivity of silica gel/pHEMA nanocomposites. J Mater Sci Mater Med 17:319–325

    Article  Google Scholar 

  32. Bourara H, Hadjout S, Benabdelghani Z, Etxeberria A (2014) Miscibility and hydrogen bonding in blends of poly(4-vinylphenol)/poly(vinyl methyl ketone). Polymers 6:2752–2763

    Article  Google Scholar 

  33. Kuo SW, Kao HC, Chang FC (2003) Thermal behavior and specific interaction in high glass transition temperature PMMA copolymer. Polymer 44:6873–6882

    Article  Google Scholar 

  34. Pantelidou M, Chitnis PR, Breton J (2004) FTIR spectroscopy of synechocystis 6803 mutants affected on the hydrogen bonds to the carbonyl groups of the PsaA chlorophyll of P700 supports an extensive delocalization of the charge in P700. Biochemistry 43:8380–8390

    Article  Google Scholar 

  35. Hobbs SY, Pratt CF (1975) Multiple melting in poly(butylene terephthalate). Polymer 16:462–464

    Article  Google Scholar 

  36. Nichols ME, Robertson RE (1992) The multiple melting endotherms from poly (butylene terephthalate). J Polym Sci Pol Phys 30:755–768

    Article  Google Scholar 

  37. Righetti MC, Di Lorenzo ML (2004) Melting process of poly (butylene terephthalate) analyzed by temperature-modulated differential scanning calorimetry. J Polym Sci Pol Phys 42:2191–2201

    Article  Google Scholar 

  38. Bula K, Jesionowski T, Krysztafkiewicz A, Janik J (2007) The effect of filler surface modification and processing conditions on distribution behaviour of silica nanofillers in polyesters. Colloid Polym Sci 285:1267–1273

    Article  Google Scholar 

  39. Zhang X, Tian X, Zheng J, Yao X, Liu W, Cui P, Li Y (2008) Relationship between microstructure and tensile properties of PET/silica nanocomposite fibers. J Macromol Sci Phys 47:368–377

    Article  Google Scholar 

  40. Gashti MP, Hajiraissi R, Gashti MP (2013) Morphological, optical and electromagnetic characterization of polybutylene terephthalate/silica nanocomposites. Fibers Polym 14:1324–1331

    Article  Google Scholar 

  41. Koti Reddy C, Shekharam T, Shailaja D (2012) Preparation and characterization of poly(chlorotrifluoroethylene-co-ethylvinyl ether)/poly(styrene acrylate) core-shells and SiO2 nanocomposite films via a solution mixing method. J Appl Polym Sci 126:1709–1713

    Article  Google Scholar 

  42. Yao X, Tian X, Zhang X, Zheng K, Zheng J, Wang R, Kang S, Cui P (2009) Preparation and characterization of poly(butyleneterephthalate)/silica nanocomposites. Polym Eng Sci 4:799–807

    Article  Google Scholar 

  43. Jiang Z, Siengchin S, Zhou LM, Steeg M, Karger-Kocsis J, Man HC (2009) Poly (butylene terephthalate)/silica nanocomposites prepared from cyclic butylene terephthalate. Compos Part A: Appl Sci Manuf 40:273–278

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aniello Costantini.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 230 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silvestri, B., Costantini, A., Speranza, V. et al. Agglomeration-free silica NPs in dry storage for PBT nanocomposite. J Sol-Gel Sci Technol 78, 531–538 (2016). https://doi.org/10.1007/s10971-016-3985-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-3985-4

Keywords

Navigation