Skip to main content
Log in

Effect on structural, optical and dielectric properties of mixed (1 − x)ZnFe2O4xSiO2 as microwave dielectric ceramic material

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Samples of (1 − x)ZnFe2O4xSiO2 with different compositions have been prepared using sol–gel method. The morphological structures of the samples were analyzed using AFM and XRD analysis. AFM images show the surface roughness of the produced samples and indicate the surface roughness increased as the compositions of x increased where the average surface roughness to be around 0.30–1.34 nm. XRD analysis indicates the phase formation of cubic structure where dominant peak has been observed with Miller indices (311) at 35.25°. The average crystallite size, D for dominant peak has been calculated with average size to be around ~10 nm. The FTIR analysis indicates the formation of spinel structure for ZnFe2O4 and also the presence of H2O molecules inside the samples. The fabricated patch antenna for samples (x = 0.05, 0.15 and 0.25) gives a good response in return loss analysis which are (>−10 dB).

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Qiu J, Lan L, Zhang H, Gu M (2008) Effect of titanium dioxide on microwave absorption properties of barium ferrite. J Alloys Compd 453(1–2):261–264. doi:10.1016/j.jallcom.2006.11.059

    Article  Google Scholar 

  2. Sugimoto S, Haga K, Kagotani T, Inomata K (2005) Microwave absorption properties of Ba M-type ferrite prepared by a modified coprecipitation method. J Magn Magn Mater 290–291:1188–1191. doi:10.1016/j.jmmm.2004.11.381

    Article  Google Scholar 

  3. Yang Y, Zhang B, Xu W, Shi Y, Jiang Z, Zhou N, Gu B, Lu H (2003) Preparation and properties of a novel iron-coated carbon fiber. J Magn Magn Mater 256(1–3):129–132. doi:10.1016/S0304-8853(02)00436-5

    Article  Google Scholar 

  4. Cvejić Ž, Rakić S, Jankov S, Skuban S, Kapor A (2009) Dielectric properties and conductivity of zinc ferrite and zinc ferrite doped with yttrium. J Alloys Compd 480(2):241–245. doi:10.1016/j.jallcom.2009.01.133

    Article  Google Scholar 

  5. Schmidbauer E, Keller R (1996) Magnetic properties and rotational hysteresis of Fe3O4 and γ-Fe2O3 particles ∼250 nm in diameter. J Magn Magn Mater 152(1–2):99–108. doi:10.1016/0304-8853(95)00446-7

    Article  Google Scholar 

  6. Wang J, Fujiwara O (1999) Effects of ferrite sheet attachment to portable telephone in reducing electromagnetic absorption in human head. In: IEEE international symposium on electromagnetic compatibility, 1999. IEEE Xplore, p 822

  7. Surendran KP, Santha N, Mohanan P, Sebastian MT (2004) Temperature stable low loss ceramic dielectrics in (1 − x)ZnAl2O4xTiO2 system for microwave substrate applications. Eur Phys J Condens Matter Complex Syst 41(3):301–306. doi:10.1140/epjb/e2004-00321-8

    Article  Google Scholar 

  8. Li F, Liu P, Ruan P, Zhang H, Guo B, Zhao X (2015) Microwave dielectric properties of (1 − x)SiO2xTiO2 ceramics. Ceram Int. doi:10.1016/j.ceramint.2015.03.196

    Google Scholar 

  9. Sebastian MT (2008) Chapter one—introduction. In: Sebastian MT (ed) Dielectric materials for wireless communication. Elsevier, Amsterdam, pp 1–10. doi:10.1016/B978-0-08-045330-9.00001-7

    Chapter  Google Scholar 

  10. Tsunooka T, Androu M, Higashida Y, Sugiura H, Ohsato H (2003) Effects of TiO2 on sinterability and dielectric properties of high-Q forsterite ceramics. J Eur Ceram Soc 23(14):2573–2578. doi:10.1016/S0955-2219(03)00177-8

    Article  Google Scholar 

  11. Shimada Y, Matsushita N, Abe M, Kondo K, Chiba T, Yoshida S (2004) Study on initial permeability of Ni–Zn ferrite films prepared by the spin spray method. J Magn Magn Mater 278(1–2):256–262

    Article  Google Scholar 

  12. Naseri MG, Saion EB, Hashim M, Shaari AH, Ahangar HA (2011) Synthesis and characterization of zinc ferrite nanoparticles by a thermal treatment method. Solid State Commun 151(14–15):1031–1035. doi:10.1016/j.ssc.2011.04.018

    Article  Google Scholar 

  13. Ravinder D, Vijay Kumar K, Ramana Reddy AV (2003) Preparation and magnetic properties of Ni–Zn ferrite thin films. Mater Lett 57(26–27):4162–4164. doi:10.1016/S0167-577X(03)00091-0

    Article  Google Scholar 

  14. Hai TH, Van HTB, Phong TC, Abe M (2003) Spinel ferrite thin-film synthesis by spin-spray ferrite plating. Phys B Condens Matter 327(2–4):194–197. doi:10.1016/S0921-4526(02)01726-X

    Article  Google Scholar 

  15. Hankare PP, Patil RP, Jadhav AV, Pandav RS, Garadkar KM, Sasikala R, Tripathi AK (2011) Synthesis and characterization of nanocrystalline Ti-substituted Zn ferrite. J Alloys Compd 509(5):2160–2163. doi:10.1016/j.jallcom.2010.10.173

    Article  Google Scholar 

  16. Pradeep A, Priyadharsini P, Chandrasekaran G (2011) Structural, magnetic and electrical properties of nanocrystalline zinc ferrite. J Alloys Compd 509(9):3917–3923. doi:10.1016/j.jallcom.2010.12.168

    Article  Google Scholar 

  17. Chinnasamy CN, Narayanasamy A, Ponpandian N, Chattopadhyay K, Guérault H, Greneche JM (2001) Ferrimagnetic ordering in nanostructured zinc ferrite. Scripta Mater 44(8–9):1407–1410. doi:10.1016/S1359-6462(01)00844-2

    Article  Google Scholar 

  18. Roy MK, Bidyut H, Verma HC (2006) Characteristic length scales of nanosize zinc ferrite. Nanotechnology 17(1):232

    Article  Google Scholar 

  19. Shenoy SD, Joy PA, Anantharaman MR (2004) Effect of mechanical milling on the structural, magnetic and dielectric properties of coprecipitated ultrafine zinc ferrite. J Magn Magn Mater 269(2):217–226. doi:10.1016/S0304-8853(03)00596-1

    Article  Google Scholar 

  20. Jenkins R, Snyder R (2012) Introduction to X-ray powder diffractometry, vol 267. Wiley, Hoboken

    Google Scholar 

  21. Zhou ZH, Xue JM, Chan HSO, Wang J (2002) Nanocomposites of ZnFe2O4 in silica: synthesis, magnetic and optical properties. Mater Chem Phys 75(1–3):181–185. doi:10.1016/S0254-0584(02)00052-4

    Article  Google Scholar 

  22. Zhang L (2004) Preparation of multi-component ceramic nanoparticles. Ohio State University, Columbus, USA

    Google Scholar 

  23. Slatineanu T, Iordan AR, Palamaru MN, Caltun OF, Gafton V, Leontie L (2011) Synthesis and characterization of nanocrystalline Zn ferrites substituted with Ni. Mater Res Bull 46(9):1455–1460. doi:10.1016/j.materresbull.2011.05.002

    Article  Google Scholar 

  24. Shokri B, Firouzjah MA, Hosseini S (2009) FTIR analysis of silicon dioxide thin film deposited by metal organic-based PECVD. In: Proceedings of 19th international symposium on plasma chemistry society, vol 2631

  25. Koops CG (1951) On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Phys Rev 83(1):121–124

    Article  Google Scholar 

  26. Wagner KW (1913) Zur Theorie der unvollkommenen Dielektrika. Ann Phys 345(5):817–855. doi:10.1002/andp.19133450502

    Article  Google Scholar 

  27. Jamal E, Kumar D, Anantharaman MR (2011) On structural, optical and dielectric properties of zinc aluminate nanoparticles. Bull Mater Sci 34(2):251–259. doi:10.1007/s12034-011-0071-y

    Article  Google Scholar 

  28. Pohl HA (1978) Dielectrophoresis the behavior of neutral matter in nonuniform electric fields. Cambridge University Press, Cambridge, New York; Melbourne

    Google Scholar 

  29. Gupta N, Verma A, Kashyap SC, Dube DC (2007) Microstructural, dielectric and magnetic behavior of spin-deposited nanocrystalline nickel–zinc ferrite thin films for microwave applications. J Magn Magn Mater 308(1):137–142. doi:10.1016/j.jmmm.2006.05.015

    Article  Google Scholar 

  30. Balanis CA (1982) Antenna theory: analysis and design, 3rd edn. Wiley, New Jersey

    Google Scholar 

  31. Jalal W, Abdullah H, Zulfakar M, Islam M, Shaari S, Bais B (2015) Synthesis and fabrication of GPS patch antennas by using Zn(1−x)Ti x Al2O4 thin films. J Sol–Gel Sci Technol 74(2):566–574. doi:10.1007/s10971-015-3673-9

    Article  Google Scholar 

  32. Jalal W, Abdullah H, Zulfakar M, Islam M, Bais B, Shaari S (2014) GPS patch antenna performance by modification of Zn(1−x)Ca x Al2O4-based microwave dielectric ceramics. J Sol–Gel Sci Technol 71(3):477–489. doi:10.1007/s10971-014-3397-2

    Article  Google Scholar 

  33. Abdullah H, Jalal W, Zulfakar M, Islam M, Bais B, Shaari S (2015) Characterization of Ti x Zn(1−x)Al2O4 thin films by sol-gel method for GPS patch antennae. J Korean Phys Soc 66(1):41–45. doi:10.3938/jkps.66.41

    Article  Google Scholar 

Download references

Acknowledgments

This project was fully carried out in Laboratory of Photonics, Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia. This work was fully supported by a Grant from the Ministry of Higher Education (ERGS/1/2012/STG05/UKM/02/5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huda Abdullah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zulfakar, M.S., Abdullah, H., Jalal, W.N.W. et al. Effect on structural, optical and dielectric properties of mixed (1 − x)ZnFe2O4xSiO2 as microwave dielectric ceramic material. J Sol-Gel Sci Technol 77, 218–227 (2016). https://doi.org/10.1007/s10971-015-3847-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3847-5

Keywords

Navigation