Skip to main content
Log in

Sol–gel synthesis of tetragonal ZrO2 nanoparticles stabilized by crystallite size and oxygen vacancies

  • Brief Communication
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this letter, we present a facile route to produce metastable tetragonal zirconia (ZrO2) nanoparticles via pH-controlled precipitation of dilute zirconyl nitrate dihydrate [ZrO(NO3)2·2H2O] solution in liquid NH3 under ambient conditions and calcination at 500 °C for 2 h. The phase pure tetragonal ZrO2 nanoparticles are obtained at pH 9. The effect of pH on metastable phase stabilization in precipitated ZrO2 nanoparticles is demonstrated with the help of XRD, SEM/EDX, and X-ray photoelectron spectroscopy techniques. The stability of tetragonal ZrO2 phase is attributed to the smaller crystallite size and greater oxygen deficiency in phase-pure tetragonal ZrO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Shukla S, Seal S (2005) Mechanisms of room temperature metastable tetragonal phase stabilisation in zirconia. Int Mater Rev 50:45–64

    Article  CAS  Google Scholar 

  2. French RH, Glass SJ, Ohuchi FS et al (1994) Experimental and theoretical determination of the electronic structure and optical properties of three phases of ZrO2. Phys Rev B 49:5133–5142

    Article  CAS  Google Scholar 

  3. Maglia F, Dapiaggi M, Tredici I et al (2010) Synthesis of fully dense nanostabilized undoped tetragonal zirconia. J Am Ceram Soc 93:2092–2097

    CAS  Google Scholar 

  4. Hsu Y-W, Yang K-H, Chang K-M et al (2011) Synthesis and crystallization behavior of 3 mol% yttria stabilized tetragonal zirconia polycrystals (3Y-TZP) nanosized powders prepared using a simple co-precipitation process. J Alloys Compd 509:6864–6870

    Article  CAS  Google Scholar 

  5. Garvie RC (1978) Stabilization of the tetragonal structure in zirconia microcrystals. J Phys Chem 82:218–224

    Article  CAS  Google Scholar 

  6. Chevalier J, Gremillard L, Virkar AV, Clarke DR (2009) The tetragonal-monoclinic transformation in zirconia: lessons learned and future trends. J Am Ceram Soc 92:1901–1920

    Article  CAS  Google Scholar 

  7. Li S, Zheng WT, Jiang Q (2006) Size and pressure effects on solid transition temperatures of ZrO2. Scr Mater 54:2091–2094

    Article  CAS  Google Scholar 

  8. Sato K, Abe H, Ohara S (2010) Selective growth of monoclinic and tetragonal zirconia nanocrystals. J Am Chem Soc 132:2538–2539

    Article  CAS  Google Scholar 

  9. Tredici IG, Maglia F, Dapiaggi M et al (2012) Synthesis of bulk tetragonal zirconia without stabilizer: the role of precursor nanopowders. J Eur Ceram Soc 32:343–352

    Article  CAS  Google Scholar 

  10. Zhang H, Li Z, Kim B-N et al (2011) Highly infrared transparent nanometric tetragonal zirconia prepared by high-pressure spark plasma sintering. J Am Ceram Soc 94:2739–2741

    Article  CAS  Google Scholar 

  11. Li X, Shimizu Y, Pyatenko A et al (2012) Tetragonal zirconia spheres fabricated by carbon-assisted selective laser heating in a liquid medium. Nanotechnology 23:115602

    Article  Google Scholar 

  12. Athar T, Ko T, Lee I-M, Ahmed W (2012) Thermal synthesis of tetragonal zirconia nanopowders. Adv Sci Lett 7:35–38

    Article  CAS  Google Scholar 

  13. Lian J, Zhang J, Namavar F et al (2009) Ion beam-induced amorphous-to-tetragonal phase transformation and grain growth of nanocrystalline zirconia. Nanotechnology 20:245303

    Article  Google Scholar 

  14. Nayak BB, Mohanty SK, Takmeel MQB et al (2010) Borohydride synthesis and stabilization of flake-like tetragonal zirconia nanocrystallites. Mater Lett 64:1909–1911

    Article  CAS  Google Scholar 

  15. Dwivedi R, Maurya A, Verma A et al (2011) Microwave assisted sol–gel synthesis of tetragonal zirconia nanoparticles. J Alloys Compd 509:6848–6851

    Article  CAS  Google Scholar 

  16. Fillit R, Homerin RP, Schafer RJ et al (1987) Quantitative XRD analysis of zirconia-toughened alumina ceramics. J Mater Sci 22:3566–3570

    Article  CAS  Google Scholar 

  17. Patterson AL (1939) The Scherrer formula for X-ray particle size determination. Phys Rev 56:978–982

    Article  CAS  Google Scholar 

  18. Balakrishnan G, Kuppusami P, Sastikumar D, Song JI (2013) Growth of nanolaminate structure of tetragonal zirconia by pulsed laser deposition. Nanoscale Res Lett 8:82

    Article  Google Scholar 

  19. Picquart M, López T, Gómez R et al (2004) Dehydration and crystallization process in sol–gel zirconia. J Therm Anal Calorim 76:755–761

    Article  CAS  Google Scholar 

  20. Chraska T, King AH, Berndt CC (2000) On the size-dependent phase transformation in nanoparticulate zirconia. Mater Sci Eng 286:169–178

    Article  Google Scholar 

  21. Valmalette JC, Isa M (2002) Size effects on the stabilization of ultrafine zirconia nanoparticles. Chem Mater 14:5098–5102

    Article  CAS  Google Scholar 

  22. Tsunekawa S, Ito S, Kawazoe Y, Wang J-T (2003) Critical size of the phase transition from cubic to tetragonal in pure zirconia nanoparticles. Nano Lett 3:871–875

    Article  CAS  Google Scholar 

  23. Zhang YL, Jin XJ, Rong YH et al (2006) The size dependence of structural stability in nano-sized ZrO2 particles. Mater Sci Eng 438–440:399–402

    Google Scholar 

  24. Nitsche R, Rodewald M, Skandan G et al (1996) HRTEM study of nanocrystalline zirconia powders. Nanostruct Mater 7:535–546

    Article  CAS  Google Scholar 

  25. Naumkin A, Kraut-Vass A, Gaarenstroom S, Powell C (2013) NIST X-ray photoelectron spectroscopy database. In: Nist Stand. Ref. Database 20

  26. Tsunekawa S, Asami K, Ito S et al (2005) XPS study of the phase transition in pure zirconium oxide nanocrystallites. Appl Surf Sci 252:1651–1656

    Article  CAS  Google Scholar 

  27. Park J-Y, Heo J-K, Kang Y-C (2010) The properties of RF sputtered zirconium oxide thin films at different plasma gas ratio. Bull Korean Chem Soc 31:397–400

    Article  CAS  Google Scholar 

  28. Wisotzki E, Balogh AG, Hahn H et al (1999) Room-temperature growth of ZrO2 thin films using a novel hyperthermal oxygen-atom source. J Vac Sci Technol Vac Surf Films 17:14–18

    Article  CAS  Google Scholar 

  29. Corallo GR, Asbury DA, Gilbert RE, Hoflund GB (1987) Electron-energy-loss study of clean and oxygen-exposed polycrystalline zirconium. Phys Rev B 35:9451–9459

    Article  CAS  Google Scholar 

  30. Fabris S, Paxton AT, Finnis MW (2002) A stabilization mechanism of zirconia based on oxygen vacancies only. Acta Mater 50:5171–5178

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Higher Education Commission (HEC) of Pakistan under National Research Program for Universities (NRPU: Grant # 1308). A.A. thanks L. Sabbatini, L. Torsi, N. Cioffi and N. Ditaranto (Univ. of Bari, Italy) for providing XPS characterization facility, basic training, and fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Adeel Afzal or Humaira M. Siddiqi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahmood, Q., Afzal, A., Siddiqi, H.M. et al. Sol–gel synthesis of tetragonal ZrO2 nanoparticles stabilized by crystallite size and oxygen vacancies. J Sol-Gel Sci Technol 67, 670–674 (2013). https://doi.org/10.1007/s10971-013-3112-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-013-3112-8

Keywords

Navigation