Skip to main content

Advertisement

Log in

A general approach for selective enhancement of green upconversion emissions in Er3+ doped oxides by Yb3+–MoO4 2− dimer sensitizing

  • OriginalPaper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this paper, we report a general approach to enhance the upconversion (UC) luminescence of Er3+ doped oxides phosphors by Yb3+–MoO4 2− dimer sensitizing, which induced strong green UC emissions under the 976 nm laser diode excitation. By codoping of Yb3+ and Mo6+ in the Er3+ doped TiO2 and ZnO, the green UC emissions intensity can be selectively increased about 10 and 500 times than those of Er3+–Yb3+ codoped TiO2 and ZnO, respectively. The high excited state energy transfer between |2F7/2, 3T2> state of Yb3+–MoO4 2− dimer and 4F7/2 level of Er3+ significantly avoids the nonradiative decay processes happened at lower energy levels of Er3+, and then increases the green UC emissions efficiently. The proposed Yb3+–MoO4 2− dimer sensitizing has been realized as an efficient way to enhance the green UC emissions in other Er3+ doped oxides phosphors. It is expected that the selective enhanced green UC emissions sensitized by Yb3+–MoO4 2− dimer in Er3+ doped oxides phosphors can greatly extend their scope of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wang F, Han Y, Lim CS, Lu YH, Wang J, Xs J, Chen HY, Zhang C, Hong MH, Liu XG (2010) Nature 463:1061–1065

    Article  CAS  Google Scholar 

  2. Wang B, Guo RM, Wang XJ, Wang L, Zhou Z (2012) Opt Mater 34:1289–1293

    Article  CAS  Google Scholar 

  3. Yang DM, Li CX, Li GG, Shang MM, Kang XJ, Lin J (2011) J Mater Chem 21:5923–5927

    Article  CAS  Google Scholar 

  4. Dong B, Liu DP, Wang XJ, Yang T, Miao SM, Li CR (2007) Appl Phys Lett 90:181117

    Article  Google Scholar 

  5. Wang M, Mi CC, Wang WX, Liu CH, Wu YF, Xu ZR, Mao CB, Xu SK (2009) ACS Nano 3:1580–1586

    Article  CAS  Google Scholar 

  6. Scheps R (1996) Prog Quantum Electron 20:271–358

    Article  CAS  Google Scholar 

  7. He F, Yang PP, Wang D, Li CX, Niu N, Gai SL, Zhang ML (2011) Langmuir 27:5616–5623

    Article  CAS  Google Scholar 

  8. Teshima K, Lee SH, Shikine N, Wakabayashi T, Yubuta K, Shishido T, Oishi S (2011) Cryst Growth Des 11:995–999

    Article  CAS  Google Scholar 

  9. Wybourne BG (1965) Spectroscopic Properties of Rare Earths. Wiley, New York

    Google Scholar 

  10. Wang HQ, Nann T (2009) ACS Nano 3:3804–3808

    Article  CAS  Google Scholar 

  11. Chen GY, Liu HC, Liang HJ, Somesfalean G, Zhang ZG (2008) J Phys Chem C 112:12030–12036

    Article  CAS  Google Scholar 

  12. Vetrone F, Naccache R, Mahalingam V, Morgan CG, Capobianco JA (2009) Adv Funct Mater 19:2924–2929

    Article  CAS  Google Scholar 

  13. Li ZQ, Zhang Y, Jiang S (2008) Adv Mater 20:4765–4769

    Article  CAS  Google Scholar 

  14. Wang F, Liu XG (2009) Chem Soc Rev 38:976–989

    Article  CAS  Google Scholar 

  15. Wade SA, Collins SF, Baxter GW (2003) J Appl Phys 94:4743–4756

    Article  CAS  Google Scholar 

  16. Cao BS, Feng ZQ, He YY, Li H, Dong B (2010) J Sol–Gel Sci Technol 54:101–104

    Article  CAS  Google Scholar 

  17. Bai YF, Wang YX, Yang K, Zhang XR, Song YL, Wang CH (2008) Opt Commun 281:5448–5452

    Article  CAS  Google Scholar 

  18. Pollnau M, Gamelin DR, Lüthi SR, Güdel HU, Hehlen MP (2000) Phys Rev B 61:3337–3346

    Article  CAS  Google Scholar 

  19. Boyer JC, Cuccia LA, Capobianco JA (2007) Nano Lett 7:847–852

    Article  CAS  Google Scholar 

  20. Martin-Rodriguez R, Valiente R, Bettinelli M (2009) Appl Phys Lett 95:091913

    Article  Google Scholar 

  21. Reinhard C, Valiente R, Güdel HU (2002) J Phys Chem B 106:10051–10057

    Article  CAS  Google Scholar 

  22. Gerner P, Reinhard C, Güdel HU (2004) Chem Eur J 10:4735–4741

    Article  CAS  Google Scholar 

  23. Tanabe Y, Moriya T, Sugano S (1965) Phys Rev Lett 15:1023–1025

    Article  CAS  Google Scholar 

  24. Cao BS, He YY, Feng ZQ, Li YS, Dong B (2011) Sens Actuators B 159:8–11

    Article  CAS  Google Scholar 

  25. Dong B, Cao BS, He YY, Liu Z, Li ZP, Feng ZQ (2012) Adv Mater 24:1987–1993

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant Nos. 11004021, 11204024 and 11274057), the 973 Program (Grant No. 2012CB626801), Educational Committee Foundation of Liaoning Province (Grant No. L2012475), Scientific and Technology Foundation of Dalian (Grant No. 2011J21DW021), and the Fundamental Research Funds for the Central Universities (Grant Nos. DC12010208, DC120101171 and DC120101173).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. Cao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, Y.Y., Liu, X.L., Cao, B.S. et al. A general approach for selective enhancement of green upconversion emissions in Er3+ doped oxides by Yb3+–MoO4 2− dimer sensitizing. J Sol-Gel Sci Technol 66, 312–316 (2013). https://doi.org/10.1007/s10971-013-3010-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-013-3010-0

Keywords

Navigation