Skip to main content
Log in

Study of the structure and mechanical properties of hexagonal BaTiO3 thin films prepared by sol–gel processing

  • Original paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Hexagonal barium titanate (HBT) thin films were prepared on borosilicate plate substrates via sol–gel method using the dip-coating process. The structure, texture and morphology of the thin film were analyzed by X-ray diffraction, atomic force microscopy, nanoindentation technique, and transmission electron microscopy. The results showed that the thin film annealed at 700 °C crystallized with BaTiO3 hexagonal phase and traces of Ba2TiO4 (secondary phase). The nanoparticles and the RMS roughness of the sample treated at 700 °C presented high values when compared with those thermally treated at lower temperatures. The hardness and Youngs’ modulus of the thin films increased with increasing in grain size, and the thin film annealed at 700 °C with crystallite size about 10 nm presented multiple “pop-in” events during nano-indentation loading curves. The annealing temperature, growth size and surface roughness were discussed in connection with the HBT mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Huang L, Chen Z, Wilson JD, Banerjee S, Robinson RD, Herman IP, Laibowitz R, O’Brien S (2006) J Appl Phys 100:034316

    Article  Google Scholar 

  2. Bell AJ (2008) J Eur Ceram Soc 28:1307

    Article  CAS  Google Scholar 

  3. Lobo RPSM, Mohallem NDS, Moreira RL (1995) J Am Ceram Soc 78:1343

    Article  CAS  Google Scholar 

  4. Setter N, Damjanovic D, Eng L, Fox G, Gevorgian S, Hong S, Kingon A, Kohlstedt H, Park NY, Stephenson GB, Stolitchnov I, Taganstev AK, Taylor DV, Yamada T, Streiffer S (2006) J Appl Phys 100:051606

    Article  Google Scholar 

  5. Stavitski N, Lyahovitskaya V, Nair J, Zon I, Popovitz-Biro R, Wachtel E, Feldman Y, Lubomirsky I (2002) Appl Phys Lett 81:4177

    Article  CAS  Google Scholar 

  6. Akishige Y, Sawaguchi E (1987) Jpn J Appl Phys 2(26):123

    Google Scholar 

  7. Ctibor P, Ageorges H, Sedlacek J, Ctvrtlik R (2010) Ceram Int 36:2155

    Article  CAS  Google Scholar 

  8. Cernea M (2004) J Opotoelectron Adv M 6:1349

    CAS  Google Scholar 

  9. Mohallem NDS, Aegerter MA (1988) MRS Proc 121:515. doi:10.1557/PROC-121-515

    Article  CAS  Google Scholar 

  10. Mohallem NDS (1994) MRS Proc 341:379. doi:10.1557/PROC-341-379

    Article  CAS  Google Scholar 

  11. Jian S-R (2008) Appl Surf Sci 254:6749

    Article  CAS  Google Scholar 

  12. Jian S-R, Jang JS-C (2009) J Alloy Compd 482:498

    Article  CAS  Google Scholar 

  13. Jian S-R, Changb W-J, Fang T-H, Ji L-W, Hsiao Y-J, Changd Y-S (2006) Mat Sci Eng B 131:281

    Article  CAS  Google Scholar 

  14. Fang T-H, Changb W-J, Lin C-M, Ji L-W, Changd Y-S, Hsiao Y-J (2006) Mat Sci Eng A 426:157

    Article  Google Scholar 

  15. Liu D, Chelf M, White KW (2006) Acta Mater 54:4525

    Article  CAS  Google Scholar 

  16. Scholz T, McLaughlin KK, Giuliani F, Clegg WJ, Espinoza-Beltrán FJ, Swain MV, Schneidera GA (2007) Appl Phys Lett 91:062903

    Article  Google Scholar 

  17. Suna Z H, White KW (2008) J Appl Phys 104:103506

    Google Scholar 

  18. Gaillard Y, Hurtado Macías A, Muñoz-Saldaña J, Anglada M, Trápaga G (2009) J Phys D: Appl Phys 42:085502

  19. Gharbi M, Sun ZH, Sharma P, White K (2009) Appl Phys Lett 95:142901

    Article  Google Scholar 

  20. Oliver W, Pharr GM (1992) J Mat Res 7:1564

    Article  CAS  Google Scholar 

  21. Montgomery DC, Runger GC (2008) Estatística Aplicada e Probabilidade para Engenheiros. LTC Editora, Rio de Janeiro

    Google Scholar 

  22. Hamada E, Cho WS, Takayanagi K (1998) Philos Mag A 77:1301

    Article  CAS  Google Scholar 

  23. Eror NG, Loehr TM, Cornilsen B C (1980) Ferroelectrics 28:321

    Google Scholar 

  24. Scholz T, Schneider GA, Muñoz-Saldaña J, Swain MV (2004) Appl Phys Lett 84:3055

    Article  CAS  Google Scholar 

  25. Nowak R, Sekino T, Maruno S, Niihara K (1996) Appl Phys Lett 68:1063

    Article  CAS  Google Scholar 

  26. Kucheyev SO, Bradby JE, Williams JS, Jagadish C, Swain MV (2002) Appl Phys Lett 80:956

    Article  CAS  Google Scholar 

  27. Bradby JE, Kucheyev SO, Williams JS, Wong-Leung J, Swain MV, Munroe P, Li G, Phillips MR (2002) Appl Phys Lett 80:383

    Article  CAS  Google Scholar 

  28. Schneider GA, Scholz T, Muñoz-Saldaña J, Swain MV (2005) Appl Phys Lett 86:192903

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by CNPq, FAPEMIG and PETROBRAS. The authors thank to Dr. Marco Antônio Schiavon of UFSJ for the XRD measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelcy D. S. Mohallem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andrade, H.R.C.S., Seara, L.M., Fadgen, W.J. et al. Study of the structure and mechanical properties of hexagonal BaTiO3 thin films prepared by sol–gel processing. J Sol-Gel Sci Technol 64, 543–548 (2012). https://doi.org/10.1007/s10971-012-2887-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-012-2887-3

Keywords

Navigation