Skip to main content
Log in

An investigation of dielectric resonator antenna produced from silicon (100) enhanced by strontium doped-barium zirconate films

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Dip-coated Ba1−x Sr x ZrO3 thick films with different Ba/Sr ratios (x = 0.0, 0.1, 0.3, 0.5, 0.7 and 0.9) were fabricated on Si (100-orient) substrate at a low temperature of 800 °C via the sol gel method. The experimental results show that dielectric resonator (DR) properties of Ba1−x Sr x ZrO3 films depend on the different Ba/Sr ratios. For structural characterization, the X-ray analysis revealed that phase transformation was affected by the increase in Sr concentrations for heat treatment at 800 °C. The films were crystalline and of single phase. The thickness of one BSZ film is around 1.259 μm when measured using the field emission scanning electron microscope. The BSZ film’s surface morphology as indicated by the atomic force microscopy showed the mean grain size to be in the range of 2.56 to 94.34 μm, and the surface roughness (RMS) was recorded to be between 2.35 to 19.64 nm. The dielectric resonator (DR) properties were measured using a network analyzer. By introducing Ba1−x Sr x ZrO3 (BSZ) films on the high dielectric Si (100-orient) substrate, better frequency stability was achieved i.e. within the range of 8–10 GHz. Measured results show that Si (100-orient) DRA has a 10 dB impedance bandwidth of 4.11% at 9.34 GHz and the BSZ improved this to 11.34% with x = 0.7 at 9.15 GHz. The radiation pattern was observed to be stable throughout the operating frequency and holds good potential for DR applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Maissel LI, Glang R (eds) (1998) Film deposition tecniques and processes. In: Thin film technology handbook. McGraw-Hill, New York

  2. Dorey RA, Whatmore RW (2004) J Elect 12(1):19–32

    CAS  Google Scholar 

  3. Xu J, Gao C, Zhai J, Xue J, Yao X, Huang Z (2006) J Cryst Growth 291(1):130–134

    Article  CAS  Google Scholar 

  4. Wu R, Du P, Weng W, Han G (2006) Mater Chem Phys 97(1):151–155

    Article  CAS  Google Scholar 

  5. Tick T, Perantie J, Jantunen H, Uusimaki A (2008) J Eur Ceram Soc 28(4):837–842

    Article  CAS  Google Scholar 

  6. Sakka S (1994) J Sol-Gel Sci Technol 2(1):451–455

    Article  CAS  Google Scholar 

  7. Rice RL, Kidd P, Holmes JD, Morris MA (2005) J Mater Chem 15(37):4032–4040

    Article  CAS  Google Scholar 

  8. Gentry KL, Zara JM, Sang-Don B, Chang-Beom E, Smith SW (2000) Ultrasonic Sympossium IEEE pp 977–980

  9. Kozuka H, Kajimura M (2000) J Am Ceram Soc 83(5):1056–1062

    Article  CAS  Google Scholar 

  10. Harizanov O, Harizanova A, Ivanova T (2004) Mater Sci Eng B 106(2):191–195

    Article  Google Scholar 

  11. Mailadil TS (2008) Dielectric materials for wireless communication. Elsevier Sci, London

    Google Scholar 

  12. Cole MW, Geyer RG (2004) Mech Mater 36(10):1017–1026

    Article  Google Scholar 

  13. Zimmermann F, Voigts M, Menesklou W, Ivers-Tiffee W (2004) J Eur Ceram Soc 24(6):1729–1733

    Article  CAS  Google Scholar 

  14. Zhao N, Wan L, Cai L, Daquan Y, Shushui Y, Rong S (2011) Mater Lett 65(23–24):3574–3576

    Article  CAS  Google Scholar 

  15. Xiayong C, Wei C, Chunlin F, Huaqiang C, Zhang Q (2011) J Sol-Gel Sci Technol 57:149–156

    Article  Google Scholar 

  16. Kumar M, Garg A, Kumar R, Bhatnagar MC (2008) Phys B Cond Matter 403(10–11):1819–1823

    Article  CAS  Google Scholar 

  17. Dixit A, Agrawal DC, Mohapatra YN, Majumder YN, Katiyar RS (2002) Mater Lett 56(6):933–940

    Article  CAS  Google Scholar 

  18. Xu ZM, Suzuki M (2006) Thin Solid Films 515(4):2326

    Article  CAS  Google Scholar 

  19. Bijumon PV, Antar YMM, Freundorfer AP, Sayer M (2008) Int J App Ceram Technol 5(4):382–393

    Article  CAS  Google Scholar 

  20. Uhlir A (1958) Proc IRE 46(6):1099–1115

    Article  Google Scholar 

  21. Theodoropoulou M, Pagonis DN, Nassiopoulou M, Krintiras CA, Geroga SN (2008) Phys Status Solidi C 5(12):3597–3600

    Article  CAS  Google Scholar 

  22. Hasch J, Haghighi T, Schollhorn C, Kasper E (2004) Patch antenna on micromachined silicon. In: Silicon monolithic integrated circuits in RF systems. pp 29–32

  23. Bhattacharyya AK, Jackson DR, Williams JT, Smith R (1991) Microstrip patch designs which do not excite surface waves. In: Antennas and propagation society international symposium, vol 1. pp 68–71

  24. Bahl G, Melamud R, Kim B, Chandorkar SA, Salvia JC, Hopcroft MA, Elata D, Hennessy RG, Candler RN, Howe RT, Kenny TW (2010) J Microelectromech Syst 19(1):162–174

    Article  CAS  Google Scholar 

  25. Waterhouse R (2001) Microstrip patch antenna in handbook of antennas in wireless communications. CRC Press, New York

    Google Scholar 

  26. Peng Z, Wang H, Yao X (2004) Ceram Int 30(7):1211–1214

    Article  CAS  Google Scholar 

  27. Colburn JS, Rahmat-Samii Y (1999) IEEE Trans Antennas Propagat 47(12):1785–1794

    Article  Google Scholar 

  28. Rejab N, Othman M, Wan Ahmad WFF, Ain MF, Ahmad ZA (2011) J Sol Gel Sci Technol 57(2):172–177

    Article  CAS  Google Scholar 

  29. Kumazawa H, Masuda K (1999) Thin Solid Films 353(1–2):144–148

    Article  CAS  Google Scholar 

  30. Azad AM, Subramaniam S (2002) Mater Res Bull 37(1):85–97

    Article  CAS  Google Scholar 

  31. Veith M, Mathur S, Lecerf N, Huch V, Decker T, Beck HP, Eiser W, Haberkorn R (2000) J Sol-Gel Sci Technol 17(2):145–158

    Article  CAS  Google Scholar 

  32. Yang CF, Zhao Y, Zhang H (2002) Supercond Sci Technol 15(11):1519

    Article  CAS  Google Scholar 

  33. Li S (2007) Chinese J Chem Phys 20(6):706

    Article  CAS  Google Scholar 

  34. Fiedziuszko SJ (2001) Dielectric resonators. In: Golio M, Golio J (eds) RF and microwave passive and active technologies. CRC Press, Boca Rator

    Google Scholar 

  35. Bhavsar V, Nguyen H, Blas N (2000) Measurement of antenna radiation patterns. Laboratory Manual, pp 1–44

  36. Zannini C, Salvant B, Metral E (2010) Electromagnetic simulations of simple models of ferrite loaded kickers in Proceedings of IPAC’10. Kyoto, Japan

    Google Scholar 

  37. Margomenos A, Jain A, Munn J, Kuo A, Sabet K, Katehi LPB (2007) Manufacturable wafer-scale microstrip patch antennas. In Antennas and propagation society international symposium IEEE, pp 928–931

Download references

Acknowledgments

This research was supported by the Research University Research Grant (Grant No. 814008) from Universiti Sains Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zainal Arifin Ahmad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wan Ali, W.F.F., Rejab, N.A., Othman, M. et al. An investigation of dielectric resonator antenna produced from silicon (100) enhanced by strontium doped-barium zirconate films. J Sol-Gel Sci Technol 61, 411–420 (2012). https://doi.org/10.1007/s10971-011-2641-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-011-2641-2

Keywords

Navigation