Skip to main content
Log in

Effect of sintering temperature on the structural, optical and electrical properties of sol–gel derived indium oxide thin films

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Sol gel derived indium oxide, In2O3; films were prepared by spin coating technique. The films were dried and sintered at different sintering temperatures (300, 400, 450 and 500 °C) in air. The effect of sintering temperature on the structural, optical and electrical properties of In2O3 thin films was studied. The morphology and structure of the films were analyzed by scanning electron microscope and X-ray diffraction. The films showed a bcc structure that changes its 400-preferential orientation to 222 orientation as the sintering temperature increases from 300 to 500 °C. The optical behavior of the films was studied by measuring the transmission spectra in the wavelength range 200–2,500 nm. Different optical models have been proposed for fitting the transmittance data and simulate the optical constants as well as the film thickness of In2O3 films. The best fitting of the data was obtained by combining the classical Drude and OJL models coupled with the Bruggeman effective medium approximation. The optical parameters of Drude model (plasma frequency and damping constant) are used calculate the electrical properties of the films. The calculated values of the electrical sheet resistance were compared with those measured experimentally by four probes. The correlation between the film orientation change and its optical and electrical properties was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kim H, Horwitz JS, Kushto GP, Qadri SB, Kafafi ZH, Chrisey DB (2001) Appl Phys Lett 78:1050

    Article  CAS  Google Scholar 

  2. Hamberg I, Granqvist CG (1986) J Appl Phys 60:R123

    Article  CAS  Google Scholar 

  3. Granqvist CG, Hultaker A (2002) Thin Solid Films 411:1

    Article  CAS  Google Scholar 

  4. Carvalho CN, Lavareda G, Amaral A, Conde O, Ramos AR (2006) J Non-Cryst Solids 352:2315

    Article  Google Scholar 

  5. Singh AV, Mehra RM (2001) J Appl Phys 90:5661

    Article  CAS  Google Scholar 

  6. Lee JH, Lee SY, Park BO (2006) Mater Sci Eng B 127:267

    Article  CAS  Google Scholar 

  7. Mammana AP, Braga ES, Torriani I, Anderson RP (1981) Thin Solid Films 85:355

    Article  CAS  Google Scholar 

  8. Manno D, Di Giulio M, Siciliano T, Filippo E, Serra A (2001) J Phys D Appl Phys 34:2097

    Article  CAS  Google Scholar 

  9. Korotcenkov G, Cerneavschi A, Brinzari V, Cornet A, Morante J, Cabot A (2002) Arbiol J Sensor Actuat B 84:37

    Article  Google Scholar 

  10. Ivanovskaya M, Bogdanov P, Faglia G (2000) Sberveglieri G Sensor Actuat B 68:344

    Article  Google Scholar 

  11. Asikainen T, Ritala M, Leskela M, Prohaska T, Friedbacher G, Grasserbauer M (1996) Appl Surf Sci 99:91

    Article  CAS  Google Scholar 

  12. Adurodija FO, Izumi H, Ishihara T, Yoshioka H, Motoyaman M, Murai K (2000) J Vac Sci Technol A 18:814

    Article  CAS  Google Scholar 

  13. Steffes H, Imawan C, Solzbacher F, Obermeir E (1999) In: Proceedings of Eurosensors XIII, The Hague, 12–15 Sept, p 871

  14. Galdikas A, Martunas Z, Setkus A (1992) Sensor Actuat B 7:633

    Article  Google Scholar 

  15. Dubow JB, Burk DE (1976) Appl Phys Lett 29(8):494

    Article  CAS  Google Scholar 

  16. Luo JK, Thomas H (1993) J Electron Mater 22(11):1311

    Article  CAS  Google Scholar 

  17. Drude P (1900) Ann Phys 3:369

    Article  CAS  Google Scholar 

  18. Fujiwara H, Kondo M (2005) Phys Rev B 71:075109

    Article  Google Scholar 

  19. Gerfin T, Grätzel M (1996) J Appl Phys 79:1722

    Article  CAS  Google Scholar 

  20. Rogozin AI, Vinnichenko MV, Kolitsch A, Möller W (2004) J Vac Sci Technol A 22:349

    Article  CAS  Google Scholar 

  21. Jung YS (2004) Thin Solid Films 467:36

    Article  CAS  Google Scholar 

  22. Losurdo M (2004) Thin Solid Films 455–456:301

    Article  Google Scholar 

  23. Forouhi AR, Bloomer I (1991) Handbook of optical constants of solids II. Academic Press, San Diego, p 151

    Google Scholar 

  24. Zhang K, Forouhi AR, Bloomer I (1999) J Vac Sci Technol A 17:1843

    Article  CAS  Google Scholar 

  25. Bender M, Seelig W, Daube C, Frankenberger H, Ocker B, Stollenwerk J (1998) Thin Solid Films 326:72

    Article  CAS  Google Scholar 

  26. Maxwell-Garnett JC (1906) Phil Trans R Soc A 205:237

    Article  Google Scholar 

  27. Bruggeman DAG (1935) Ann Phys Lpz 24:636

    Article  CAS  Google Scholar 

  28. Ederth J, Niklasson GA, Hultåker A, Heszler P, Granqvist CG, van Doorn AR, Jongerius MJ, Burgard D (2003) J Appl Phys 93:984

    Article  CAS  Google Scholar 

  29. Ederth J, Johnsson P, Niklasson GA, Hoel A, Hultåker A, Heszler P, Granqvist CG, van Doorn AR, Jongerius MJ, Burgard D (2003) Phys Rev B 68:155410

    Article  Google Scholar 

  30. Mergel D, Qiao Z (2002) J Phys D Appl Phys 35:794

    Article  CAS  Google Scholar 

  31. Weijtens CHL, van Loon PAC (1991) Thin Solid Films 196:1

    Article  CAS  Google Scholar 

  32. Jin ZC, Hamberg I, Granqvist CG (1988) J Appl Phys 64:5117

    Article  CAS  Google Scholar 

  33. Brehme S, Fenske F, Fuhs W, Nebauer E, Poschenrieder M, Selle B, Sieber I (1999) Thin Solid Films 342:167

    Article  CAS  Google Scholar 

  34. Solieman A, Aegerter MA (2006) Thin Solid Films 502:205

    Article  CAS  Google Scholar 

  35. Chambouleyron I, Ventura SD, Birgin EG, Martínez JM (2002) J Appl Phys 92:3093

    Article  CAS  Google Scholar 

  36. Lin L, Lai F, Huang Z, Qu Y, Gai R (2006) Proc SPIE 6149:614920

    Article  Google Scholar 

  37. O’Leary SK, Johnson SR, Lim PK (1997) J Appl Phys 82(7):3334

    Article  Google Scholar 

  38. Solieman A, Abusehly AA (2010) Physica B 405:1101

    Article  CAS  Google Scholar 

  39. Vincent JL (1972) J Electrochem Soc 119:515

    Article  CAS  Google Scholar 

  40. Fan JCC, Goodenough JB (1977) J Appl Phys 48:3524

    Article  CAS  Google Scholar 

  41. Agnihotri OP, Sharma AK, Gupta BK, Tangaraj (1978) J Phys D 11:643

  42. Parent P, Dexpert H, Tourillan G (1992) J Electrochem Soc 139(1):276

    Article  CAS  Google Scholar 

  43. Prathap P, Gowri Devi G, Subbaiah YPV, Ramakrishna Reddy KT, Ganesan V (2008) Curr Appl Phys 8:120–127

    Article  Google Scholar 

  44. Kostlin H, Jost R, Lems W (1975) Phys Status Solidi A 29:87

    Article  Google Scholar 

  45. Kim D, Han Y, Cho JS, Koh SK (2000) Thin Solid Films 377–378:81

    Article  Google Scholar 

  46. Terzini E, Thilakan P, Minarini C (2000) Mater Sci Eng B 77:110

    Article  Google Scholar 

  47. Sundaram KB, Bhagavat K (1981) Thin Solid Films 78:35

    Article  CAS  Google Scholar 

  48. Thilakan P, Kumar J (1998) Mater Sci Eng B 55:195

    Article  Google Scholar 

  49. Lee JH, Park BO (2004) Surf Coat Technol 184:102

    Article  CAS  Google Scholar 

  50. Adurodija FO, Semple L, Bruning R (2005) Thin Solid Films 492:153

    Article  CAS  Google Scholar 

  51. Mahfouz RM, Al-Ahmari S, Al-Fawaz A, Al-Othman Z, Warad IK, Siddiqui MR (2011, March) Mat Res 14(1). doi:10.1590/S1516-14392011005000009

  52. Joshi RN, Singh VP, McClure JC (1995) Thin Solid Films 257:32

    Article  CAS  Google Scholar 

  53. Warren BE (1990) X-ray diffraction. Dover, New York, p 253

    Google Scholar 

  54. Theiss M Hard and Software for Optical Spectroscopy, Dr. Bernhard-Klein-Str. 110, 52078 Aachen, Germany, http://www.mtheiss.com

  55. Matino F, Persano L, Arima V et al (2005) Phys Rev B 72(8):72

    Article  Google Scholar 

  56. Anwar M, Ghauri IM, Siddiqi SA (2006) J Mater Sci 41(10):2859–2867

    Article  CAS  Google Scholar 

  57. Chopra KL, Major S, Pandya DK (1983) Thin Solid Films 102:1

    Article  CAS  Google Scholar 

  58. Hamberg I, Granqvist CG (1986) J Appl Phys 60(11):R123

    Article  CAS  Google Scholar 

  59. Hartnagel HL, Dawar AL, Jain AK, Jagadish C (1995) Semiconducting transparent thin films. Institute of Publishing, Bristol

    Google Scholar 

  60. Weiher RL, Ley RP (1966) J Appl Phys 37(1):299–302

    Article  CAS  Google Scholar 

  61. Naseem S, Rauf IA, Hussain K et al (1988) Thin Solid Films 156(1):161–171

    Article  CAS  Google Scholar 

  62. Gassenbauer Y, Klein A (2006) J Phys Chem B 110(10):4793–4801

    Article  CAS  Google Scholar 

  63. Erhart P, Klein A, Egdell RG et al (2007) Phys Rev B 75(15):153205

    Article  Google Scholar 

  64. Fuchs F, Bechstedt F (2008) Phys Rev B 77(15):155107

    Article  Google Scholar 

  65. Walsh A, Da Silva JLF, Wei SH et al (2008) Phys Rev Lett 100(16):167402

    Article  Google Scholar 

  66. Vasnt Kumar CVR, Mansingh A (1989) J Appl Phys 65:1270

    Article  Google Scholar 

  67. Mergel D, Schenkel M, Ghebre M, Sulkowski M (2001) Thin Solid Films 392:91

    Article  CAS  Google Scholar 

  68. Noguchi S, Sakata H (1980) J Phys D 13:1129

    Article  CAS  Google Scholar 

  69. Savarimuthu E, Lalithambika KC, Moses Ezhil Raj A, Nehru LC, Ramamurthy S, Thayumanavan A, Sanjeeviraja C, Jayachandran M (2007) J Phys Chem Solids 68:1380–1389

    Article  CAS  Google Scholar 

  70. Joseph Prince J, Ramamurthy S, Subramanian B, Sanjeevaraja C, Jayachandran M (2002) J Cryst Growth 240:142

    Article  CAS  Google Scholar 

  71. Bel HadjTahar R, Ban T, Ohya Y, Takahashi Y (1998) J Appl Phys 83:2631

    Article  CAS  Google Scholar 

  72. Baba Ali E, Sorensen G, Ouerfelli J, Bernede JC, El Maliki H (1999) Appl Surf Sci 152:1

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by scientific research deanship of Taibah University under the project number 226/429.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Solieman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solieman, A. Effect of sintering temperature on the structural, optical and electrical properties of sol–gel derived indium oxide thin films. J Sol-Gel Sci Technol 60, 48–57 (2011). https://doi.org/10.1007/s10971-011-2549-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-011-2549-x

Keywords

Navigation