Skip to main content

Advertisement

Log in

The role sol–gel process for nuclear fuels-an overview

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The paper reviews the sol–gel methods used for the preparation of nuclear fuel materials in the form of microspheres. It also discusses how these microspheres can be fabricated into nuclear fuels for reactors such as High Temperature Gas Cooled Reactors and Fast Reactors. The performance of these microsphere-based fuels is reviewed. More recent applications, such as the transmutation of minor actinides, (Np, Am and Cm) and hydrogen production, are also briefly covered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. IAEA web site: www.iaea.org

  2. Technology Road Map for Generation IV Nuclear Energy Systems, US DOE Nuclear Energy Research Advisory Committee and Generation IV International Forum (2000)

  3. International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO). Progress Report 2008, International Atomic Energy Agency, Vienna (2008)

  4. Reliable, Affordable, and Environmentally Sound Energy for America’s Future. A report of the National Energy Policy Development Group, US Government Printing Office, Washington (2001)

  5. Advanced Fuel Cycle Initiative Progress report 2005. US Department of Energy, Washington (2005)

  6. Haas PA, Haws CC Jr, Kitts FG, Ryon AD (1968) Engineering development of sol-gel process at Oak Ridge National Laboratory, ORNL/TM-1978, Oak Ridge National Laboratory, Oak Ridge

  7. Haas PA (1972) Process requirement of preparing ThO2 spheres by ORNL sol-gel process, ORNL/TM-3978. Oak Ridge National Laboratory, Oak Ridge

    Google Scholar 

  8. McBride JP (compiler), Preparation of UO2 microspheres by a sol-gel technique, ORNL-3874 Oak Ridge National Laboratory, Oak Ridge (1966)

  9. McBride P, McCorkle KH Jr, Pattison WL, Finney BC (1972) Cusp process for preparing concentrated crystalline urania sols by solvent extraction. Nucl Technol 13(2):148

    CAS  Google Scholar 

  10. Brambilla G, Gerontopoulos P, Neri D (1970) The SNAM process for the preparation of ceramic nuclear fuel microspheres. Energia Nucl 17:217

    CAS  Google Scholar 

  11. Facchini AG, Gerontopoulos P (1974) Present state of the art of the SNAM process for preparation of ceramic nuclear fuel microspheres, in sol–gel process for fuel fabrication, IAEA-161, International Atomic Energy Agency, Vienna 227

  12. Cogliati G, Facchini A (1970) A pilot pilant for continuous preparation of U-Pu oxide spheres. In: Proceedings of Symposium on Sol-Gel Processes and Reactor Fuel Cycles, Gatlinberg, CONF-700502, International Atomic Energy Agency, Vienna, 210

  13. Huschka H, Vygen P (1977) Coated fuel particles: requirement and status of fabrication technology. Nucl Tech 35:239

    Google Scholar 

  14. Kadner M, Baier J (1976) Production of fuel kernels for high temperature reactor fuel elements. Kerntechnik 18:413

    CAS  Google Scholar 

  15. Zimmer E, Naefe P, Ringel H (1978) Aqueous chemical processes for the preparation of high temperature reactor fuel kernels. Radiochim Acta 25:161

    CAS  Google Scholar 

  16. Ringel H, Zimmer E (1979) The external gelation process for preparation of ThO2 and (Th,U)O2 fuel kernels. Nucl Technol 45:287

    Google Scholar 

  17. Hardy CJ, Lane ES (1970) Gel process development in the United Kingdom. In: Proceedings of Symposium on Sol-Gel Processes and Reactor Fuel Cycles, Gatlinberg CONF-700502, International Atomic Energy Agency, Vienna, 137

  18. Taylor HA (1974) Gel precipitation process development in the UK, in sol-gel process for fuel fabrication, IAEA-161, International Atomic Energy Agency, Vienna, 1

  19. Zimmer E, Naefe P, Ringel H (1975) Continuous working process for the production of ThO2, and (Th,U)O2 kernels. In: Proceedings of Conference on Nuclear Energy Maturity, Paris, Vol 7:1

  20. Ganguly C, Langen H, Zimmer E, Merz ER (1986) Nucl Tech 73:84

  21. Tomita1 Y, Morihira M, Kihara Y, Tamaki Y (2005) Fuel microsphere fabrication tests for sphere-pac fuel by the external gelation process. In: Proceedings of GLOBAL 2005, Tsukuba, Japan, Paper No.198

  22. Kanij JBW, Noothout AJ, Votocek O (1974) The KEMA U(VI) process for the production of UO2 micropsperes, pp in Sol-Gel Process for Fuel Fabrication, IAEA-161, International Atomic Energy Agency, Vienna, 185

  23. van der Brugghens FW, Noothout AJ, Hermans MEA, Kanij JBW, Votocek O (1970) A U(VI)-process for microsphere production. In: Proceedings of Symposium Sol-Gel Processes and Reactor Fuel Cycles, Gatlinburg, 1970, CONF-700502, US Atomic Energy Commission, Washington, 185

  24. Sratton RW (1985) Swiss work on advanced fuels, in advanced fuel technology and performance, IAEA-TECDOC-352, International Atomic Energy Agency, Vienna, 39

  25. Haas PA, Begovich JM, Ryon AD, Vavruska JS (1980) Chemical flowsheet conditions for preparing urania spheres by internal gelation. Ind Eng Chem Prod Res Dev 19(3):459

    Google Scholar 

  26. Collins JL, Hunt RD, Del Cul GD, Williams DF (2004) Production of depleted UO2 kernels for the advanced gas-cooled reactor program for use in TRISO coating development, ORNL/TM-2004/123, 2004, Oak Ridge National Laboratoty, Oak Ridge

  27. Sood DD (1990) Fuel production through sol-gel process. In: Proceedings of Symposium on Nuclear Power-Advanced Fuel Cycles, Mumbai, p 6–1

  28. Vaidya VN, Mukherjee SK, Joshi JK, Kamat RV, Sood DD (1987) A study of chemical parameters of the internal gelation based sol-gel process for uranium dioxide. J Nucl Mater 148:324

    Article  CAS  Google Scholar 

  29. Vaidya VN (2008) Status of sol-gel process for nuclear fuels. J Sol-Gel Sci Technol 46:369

    Article  CAS  Google Scholar 

  30. Spence RD, Fowler VL, Ryon AD (1983) Equipment for laboratory-scale production of (U, Pu)O2 spheres by the internal gelation process using silicone oil, ORNL/TM-8696. Oak Ridge National Laboratory, Oak Ridge

    Google Scholar 

  31. Lloyd MH, Collins JL, Fellows RL, Shell SE, Newman DH, Stines WB (1983) A gel sphere process for FBR fuel fabrication from coprocessed feed, ORNL/TM-8399. Oak Ridge National Laboratory, Oak Ridge

    Google Scholar 

  32. Robisson A-C, Lemonnier S, Grandjean S (2004) Sol gel chemistry applied to the synthesis of actinide-based compounds for the fabrication of advanced fuels. In: Proceedings of ATALANTE 2004 conference, Nîmes, France, 1

  33. Lackey WJ, Selle JE (1978) Assesment of sphere-pac fuel for fast breeder reactors, ORNL-5468. Oak Ridge National Laboratory, Oak Ridge

    Google Scholar 

  34. Pouchon M, Ingold F, Kopajtic Z, Tomita Y, Kono S (2003) Fabrication and characterization of MOX microspheres for the FUJI Project. In: Proceedings Global 2003, New Orleans, 653

  35. Bart G, Bakker K, Hellwig C, Kihara Y, Ozawa T, Wallin H, Shigetome Y (2005) FUJI, an initial sintering comparison test for pelletized-, sphere-Pac- and Vipac- fast breeder reactor mixed oxide fuel. In: Proceedings of GLOBAL 2005 Tsukuba, Japan

  36. Grandjean S, Robisson A-C, Dauby J, Picart S, Lecomte M, Masson M, Brossard P (2005) Co-conversion of actinides in the frame of generation IV back end fuel cycle: first results obtained in the CEA-ATALANTE Facility. In: Proceedings of GLOBAL 2005 Tsukuba, Japan

  37. Kumar N, Sharma RK, Ganatra VR, Mukerjee SK, Vaidya VN, Sood DD (1991) Studies of the preparation of thoria and thoria-urania microspheres using internal gelation process. Nucl Tech 96:169

    CAS  Google Scholar 

  38. Ashok Kumar, Vittal Rao TV, Mukerjee SK, Vaidya VN (2006) Recycling of chemicals from alkaline waste generated during preparation of UO3 microspheres by sol–gel process. J Nucl Mater 350:254

  39. Fu X, Liang T, Tang Y, Xu Z, Tang C (2004) Preparation of UO2 kernel for HTR-10 fuel element. J Nucl Sci Tech 41(9):943

    Google Scholar 

  40. Federer JI, Tennery VJ (1978) Synthesis of (U, Pu)C by carbothermic reduction of mixed oxides and evaluation of sintering behaviour, ORNL/TM-6089. Oak Ridge National Laboratory, Oak Ridge

    Google Scholar 

  41. Alder HP, Ledergerber G, Stratton RW (1988) Advanced fuel for fast breeder reactors produced by gelation methods. In: Advanced Fuel for Fast Breeder Reactors: Fabrication and Properties and their Optimization. IAEA-TECDOC-466, International Atomic Energy Agency, Vienna

  42. Biscoff K, Llyod MH, Schumacher H (1974) Sol-gel process for carbide preparation, in Sol_Gel process for fuel fabrication, IAEA-161, International Atomic Energy Agency, Vienna, 95

  43. Stratton RW, Bischoff K (1975) Mixed carbide fuel programme at EIR. In: Proceedings of Nuclear Energy Maturity Conference, Paris, Vol. 3, 414

  44. Ledergerber G, Kopajtic Z, Ingold F, Stratton RW (1992) Preparation of uranium nitide in the form of microspheres. J Nucl Mater 188:28

    Article  CAS  Google Scholar 

  45. Mukerjee SK, Dehadraya JV, Vaidya VN, Sood DD (1990) Kinetics study of carbothermic synthesis of uranium monocarbide microspheres. J Nucl Mater 172:37

    Google Scholar 

  46. Sood DD, Mukerjee SK, Vaidya VN, Venugopal V (1993) Uranium nitride: its preparation, oxidation and vaporisation. J Metals Materials Process 5(1):13

    Google Scholar 

  47. Pai RV, Dehadraya JV, Bhattacharya S, Guprta SK, Mukherjee SK (2008) Fabrication of dense (Th, U)O2 pellets through microsphere impregnation technique. J Nucl Mater 381:249

    Article  CAS  Google Scholar 

  48. Lerch RE, Norman RE (1984) Nuclear fuel conversion and fabrication chemistry. Radiochim Acta 36:75

    CAS  Google Scholar 

  49. LeBlanc JM, Vanden Bemden E (1978) Chemical aspects of mixed oxide fuel production. Radiochim Acta 25:149

    Google Scholar 

  50. Nelson RL, Parkinson N, Kent WCL (1981) UK Development towards remote fabrication of breeder reactor fuel. Nucl Tech 53:196

    CAS  Google Scholar 

  51. Mathews RB, Hart PE (1980) Nuclear fuel pellet fabrication from gel-derived microspheres. J Nucl Mater 92:207

    Article  Google Scholar 

  52. Cogliati G, Gerontopoulos P, Richter K (1982) Gel supported precipitation conversion and preparation of (U,Pu)O2 pellets. Trans Am Nucl Soc 40:175

    Google Scholar 

  53. Haas PA, Begovich JM, Ryan AD, Vavruska JS (1979) ORNL/TM-6850. Oak Ridge National Laboratory, Oak Ridge

    Google Scholar 

  54. Zimmer E, Ganguly C, Borchardt J, Langen H (1988) SGMP- an advanced method for fabrication of UO2 and MOX pellets. J Nucl Mater 152:169

    Article  Google Scholar 

  55. Suryanarayana S, Kumar N, Bamankar YR, Vaidya VN, Sood DD (1996) Fabrication of UO2 pellets by gel pelletisation technique without addition of carbon as pore former. J Nucl Mater 230:140

    Google Scholar 

  56. Fernandez-Carretero A, Nästren C, Staicu D, Somers J (2008) Advanced fuel fabrication processes for transmutation, 10th OECD Information Exchange Meeting on Partitioning and Transmutation, MITO

  57. Gulden TD, Nickel H (1977) Coated particle fuels. Nucl Tech 35:206

    CAS  Google Scholar 

  58. Huschka H, Vygen P (1977) Coated fuel particles-requirement and status of fabrication technology. Nucl Tech 35:239

    Google Scholar 

  59. Fuel for High Temperature Gas Cooled Reactors: Fuel Performance and Fission Product Behaviour in Gas Cooled Reactors IAEA-TECDOC-978, International Atomic enrgy Agency, Vienna, 1997

  60. Hollabaugh CM, Wahman LA, Reiswig RD, White RW, Wagner R (1977) Chemical vapour deposition of ZrC made by reaction of ZrCl4 with CH4 and C3H6. Nucl Tech 35:527

    CAS  Google Scholar 

  61. Taiwo TA, Hoffman EA, Hill RN, Yang WS (2007) Evaluation of long-life transuranic breakeven burner cores for waste minimization. Nucl Tech 155:55

    Google Scholar 

  62. Okano Y, Naganuma M, Ikeda H, Mizuno T, Onomura M (2005) Conceptual design study of helium cooled fast reactor “Feasibility Study” in Japan. In: Proceedings of GLOBAL 2005 Tsukuba, Japan, Paper 412

  63. Sens PF, Kanij TW, Nater TW, Verheugen JHN (1975) Fabrication of vibrasol fuel rods. Trans. of Conference on Nuclear Energy Maturity, Paris, Volume 7, 13

  64. Lahr HWH (1976) Fabrication, properties, and radiation behavior of U/Pu particle fuel for light water reactors. Nucl Technol 31:183

    CAS  Google Scholar 

  65. Lotts AL (Compiler), Fast breeder reactor oxide fuels development, Final Report, ORNL-4901, Oak Ridge National Laboratory, Oak Ridge, (1973)

  66. Stratton RW, Smith L (1977) The irradiation behaviour of sphere-pac carbide fuel. In: Proceedings of Symposium on Advanced LMFBR Fuels. Tuscon, Americam Nuclear Society, La Grange Park, 349

  67. Ayer JE, Soppet FE (1965) J Am Ceramic Soc 48(4):180

    Google Scholar 

  68. Fitts RB, Miller FL (1974) A comparison of Sphere-pac and Pellet (U, Pu)O2, fuel pins in low burnup instrumented irradiation tests. Nucl Tech 21:26

    CAS  Google Scholar 

  69. Pouchan M, Ingold F, Kopajtic Z, Tomita Y, Kono S (2003) Fabrication and characterization of MOX microspheres for FUJI project. Proceedings Global 2003, New Orleans

  70. Bart G, Bakker K, Hellwig C, Kihara Y, Ozawa T, Wallin H, Shigetome Y, FUJI (2007) Initial sintering comparison test for pelletized, sphere-pac and vipac-fast breeder reactor mixed oxide fuel. J Nucl Sci Technol 44(3):329

  71. Morihira M, Nakamura M, Hellwig C, Bakker K, Ozawa T, Bart G, Kihara Y (2005) PIE results of comparative irradiation tests in HFR for sphere-pac fuel, pellet fuel and Vipac Fuel. In: Proceedings of GLOBAL 2005, Tsukuba, Japan

  72. Stratton RW, Ledergerber G, Ingold F, Latimer TW, Chidester KM (1990) Fuel fabrication processes, design, and experimental conditions for the joint US-Swiss mixed carbide test in FFTF. J Nucl Mater 204:39

    Article  Google Scholar 

  73. Bart G, Botta FB, Hoth CW, Ledergerber G, Mason RE, Stratton RW (2008) AC-3-irradiation test of sphere-pac and pellet (U, Pu)C fuel in the US fast flux test facility. J Nucl Mater 376:47

    Article  CAS  Google Scholar 

  74. Versluis RM, Venneri F, Petti D, Snead L, McEachern D (2008) PROJECT DEEP-BURN: development of transuranic fuel for high-temperature helium cooled reactors. In: Proceedings of the 4th International Topical Meeting on High Temperature Reactor Technology, HTR 2008, Washington

  75. Khoroshev M, Teuchert E (1996) Use of plutonium in pebble bed HTRs in a two ball type concept, IAEA-TECDOC-916, International Atomic Energy Agency, Vienna, 65

  76. Implication of Partitioning and Transmutation in Radioactive Waste Management, STI/DOC/010/435, International Atomic Energy Agency, Vienna, (2004)

  77. Salvatores M (2002) ‘Transmutation: issues, innovative options and perspectives. Prog Nucl Energy 40[3–4]:375

  78. Bordier G (2008) The ATALANTE Facilty at CEA/Marcoule: towards Gen IV System Fuel Cycle. Proceedings of ATALANTE 2008 Conference, Montpellier

  79. Arai Y, Pillon S (2004) Status of fuel transmutation programmes in Japan and France: Lessons Drawn from Results. Proceedings of ATALANTE 2004, Nimes, France

  80. Warin D (2005) Status of the French research program for actinides and fission products partitioning and transmutation. In: Proc GLOBAL 2005, Tsuguba

  81. Bourg S, Hill C, Caravaca C, Rhodes C, Ekberg C (2008) ACSEPT, Actinide reCycling by SEParation and Transmutation. In: Proceedings of ATALANTE 2008, Montpellier

  82. Griffith A (2008) The advanced fuel cycle facility (AFCF) role in the global nuclear energy partnership. In: Proceedings of ATALANTE 2008, Montpellier

  83. Ledergerber G, Ingold F, Stratton RW, Prunier C, Waris D, Bauer M (1996) Preparation of transuranium fuel and targets, materials for transmutation of actinides by gel co-conversion. Nucl Tech 114:194

    CAS  Google Scholar 

  84. Vitart X, Carles P, Duigou ALE (2005) Thermochemical production of hydrogen using nuclear heat: a survey of technical and economical issues. In: Proceedings of GLOBAL 2005, Tsuguba

  85. Richards M, Shenoy A, Schultz K, Brown L, Harvego E, McKellar M, Okamoto F, Handa N, Coupey J-P, Mohsin Reza SM (2005) Conceptual designs for MHR-based hydrogen production systems. In: Proceedings of GLOBAL 2005 Tsukuba

  86. Yildiz B, Hohnholt KJ, Kazimi MS (2007) Hydrogen production nursing high temperature steam electrolysis supported by advanced gas reactors with supercritical CO2 cycles. Nucl Tech 155:1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. Sood.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sood, D.D. The role sol–gel process for nuclear fuels-an overview. J Sol-Gel Sci Technol 59, 404–416 (2011). https://doi.org/10.1007/s10971-010-2273-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-010-2273-y

Keywords

Navigation