Skip to main content
Log in

Lanthanum zirconate nanoparticles and ceramics produced using a nitrate-modified alkoxide synthesis route

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Fine lanthanum zirconate powder was prepared by thermally decomposing a nitrate-alkoxide-based precursor derived from dehydrated lanthanum nitrate, zirconium n-butoxide and 2-methoxyethanol. Upon heating, the decomposition of the organic groups was promoted by the nitrate groups, yielding a porous powder that crystallized into a pyrochlore phase at 800 °C. The powder that was heat treated at 900 °C for 1 h was composed of friable agglomerates of approximately 60-nm-sized nanoparticles. The ceramics obtained from the powder heat treated at 900 °C and milled for 30 min reached a relative density of 97.9 % after sintering at 1,400 °C for 10 h, which is at least 100 °C lower than the typically reported temperatures for this material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Cao XQ, Vassen R, Stoever D (2004) J Eur Ceram Soc 24:1–10

    Article  CAS  Google Scholar 

  2. Kido H, Komarneni S, Roy R (1991) J Am Ceram Soc 74(2):422–424

    Article  CAS  Google Scholar 

  3. Bolech M, Cordfunke EHP, Genderen ACG, Van der Laan RR, Janssen FJJG, Van Miltenburg JC (1997) J Phys Chem Solids 58(3):433–439

    Article  CAS  Google Scholar 

  4. Nair J, Nair P, Doesburg GBM, Van Ommen JG, Ross J, Burggraaf AJ (1999) J Am Ceram Soc 82(8):2066–2072

    Article  CAS  Google Scholar 

  5. Labrincha JA, Frade JR, Marques FMB (1993) J Mater Sci 28:3809–3815

    Article  CAS  Google Scholar 

  6. Kuscer D, Holc J, Hrovat M, Kolar D (2001) J Eur Ceram Soc 21:1871–1820

    Article  Google Scholar 

  7. Kuscer D, Holc J, Hrovat M, Bernik S, Samardzija Z, Kolar D (1995) Solid State Ionics 78:79–85

    Article  CAS  Google Scholar 

  8. Bernik S, Marinenko RB, Holc J, Samardzija Z, Ceh M, Kosec M (2003) J Mater Res 18(2):515–523

    CAS  Google Scholar 

  9. Chen D, Xu R (1998) Mater Res Bull 33:409–417

    Article  CAS  Google Scholar 

  10. Matsumura Y, Yoshinaka M, Hirota K, Yamaguchi O (1997) Solid State Commun 104(6):341–345

    Article  CAS  Google Scholar 

  11. Ota A, Matsumura Y, Yoshinaka M, Hirota K (1998) J Mater Sci Lett 17:199–201

    Article  CAS  Google Scholar 

  12. Rao KK, Banu T, Vithal M, Swamy GYSK, Kumar KR (2002) Mater Lett 54:205–210

    Article  Google Scholar 

  13. Baythoun MSG, Sale FR (1982) J Mat Sci 17:2757–2769

    Article  CAS  Google Scholar 

  14. Schafer J, Sigmund W, Roy S, Aldinger F (1997) J Mater Res 12(10):2518–2521

    Article  CAS  Google Scholar 

  15. Wang HW, Hall DA, Sale FR (1992) J Am Ceram Soc 75(1):124–130

    Article  CAS  Google Scholar 

  16. Wang HW, Hall DA, Sale FR (1994) J Therm Anal 41:605–620

    Article  CAS  Google Scholar 

  17. Gmehling J, Menke J, Krafczyk J, Fischer K, Fontaine J-C, Kehiaian HV (2006–2007) CRC Handbook of chemistry and physics, 87th edn, vol 6. pp 155–173

  18. Langford JI (1992) NIST special publication 846. Proceedings of the international conference accuracy in powder diffraction II, Gaitherburg, MD, May 26–29 1992

  19. Masson O, Peakoc, Profile fitting computer program, SPTCS Limoges, France (olivier.masson@unilim.fr)

  20. Kolar D (1993) Tehnična keramika (Technical Ceramics). Zavod Republike Slovenije za šolstvo in šport, Ljubljana, p 110

  21. JCPDS data file no: 25-0423

  22. JCPDS data file no: 36-1481

  23. JCPDS data file no: 73-0444

  24. JCPDS data file no: 82-1011

  25. Gobichon AE, Auffredic JP, Louer D (1997) Solid State Ionics 93:51–64

    Article  Google Scholar 

  26. Turova NY, Turevskaya EP, Kessler VG, Yanovskaya MI (2002) The chemistry of metal alkoxides. Kluwer Academic Publisher

  27. Luo S, Tang Z, Yao W, Zhang Z (2003) Microelectron Eng 66:147–152

    Article  CAS  Google Scholar 

  28. System ZrO2–La2O3, Phase diagrams for ceramists (1971) In: Roth RS, Negas T, Cook LP (eds) vol 4. The Americam Ceramic Society, 1981, Fig. 05232 (after Rouanet A, Rev Int Hautes Temp Refract, 8(2):161–180)

  29. Hongming Z, Danquin Y, Zhiming Y, Lairong X (2007) J Alloys Compound 438:217–221

    Article  CAS  Google Scholar 

Download references

Acknowledgement

EU Centre of Excellence SICER (G1MA-CT-2002-04029) and the Slovenian Research Agency under program “Electronic ceramics, nano, 2D and 3D structures” P2-105, ARRS are acknowledged for their financial support. The authors wish to thank Mrs. Jana Cilensek and Mr. Silvo Drnovsek for help in the experimental work and Mr. Tadej Rojac for the crystallite-size calculation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena-Daniela Ion.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ion, ED., Malic, B. & Kosec, M. Lanthanum zirconate nanoparticles and ceramics produced using a nitrate-modified alkoxide synthesis route. J Sol-Gel Sci Technol 44, 203–209 (2007). https://doi.org/10.1007/s10971-007-1625-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-007-1625-8

Keywords

Navigation