Skip to main content
Log in

The evolution of morphology of ordered porous TiO2 films fabricated from sol-gel method assisted ZnO nanorod template

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Ordered porous TiO2 films, including TiO2 nanotube arrays, are fabricated by a sol-gel dip-coating approach via ZnO nanorod templates obtained from aqueous solution approach. The results indicate that the morphologies of ordered porous TiO2 films have been great affected by the sol-gel dip-coating cycle number. Open-ended TiO2 nanotube arrays can be obtained in optimum dip-coating cycle numbers. The TiO2 nanotubes with the inner diameter matching well with the diameters of ZnO nanorods, are well assembled and separate each other. When the cycle number is less than this optimum value, no intact porous TiO2 film can be obtained. As the cycle number is larger than this optimum value, an ordered porous TiO2 film with many throughout holes is formed. The evolutive mechanism of ordered porous TiO2 films is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mor GK, Varghese OK, Paulose M, Shankar K, Grimes CA (2006) Sol Energy Mater Sol Cells 90:2011

    Article  CAS  Google Scholar 

  2. Diebold U (2003) Surf Sci Rep 48:5

    Article  Google Scholar 

  3. Adachi M, Okada I, Ngamsinlapasathian S (2002) Electrochemistry 70:449

    CAS  Google Scholar 

  4. Huynh WU, Ditter JJ, Alivisatos AP (2002) Science 295:2425

    Article  CAS  Google Scholar 

  5. Adachi M, Murata Y, Harada M, Yoshikawa Y (2000) Chem Lett 29:942

    Article  Google Scholar 

  6. Chu SZ, Inoue S, Wada K, Li D, Haneda H, Awatsu S (2003) J Phys Chem B 107:6586

    Article  CAS  Google Scholar 

  7. Mor GK, Carvalho MA, Varghese OK, Pishko MV, Grimes CA (2004) J Mater Res 19:628

    Article  CAS  Google Scholar 

  8. Paulose M, Varghese OK, Mor GK, Grimes CA, Ong KG (2006) Nanotechnology 17:398

    Article  CAS  Google Scholar 

  9. Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA (2005) Nano Lett 5:191

    Article  CAS  Google Scholar 

  10. Varghese OK, Paulose M, Shankar K, Mor GK, Grimes CA (2005) J Nanosci Nanotechnol 5:1158

    Article  CAS  Google Scholar 

  11. Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA (2006) Nano Lett 6:215

    Article  CAS  Google Scholar 

  12. Paulose M, Shankar K, Varghese OK, Mor GK, Hardin B (2006) Nanotechnology 17:1446

    Article  CAS  Google Scholar 

  13. Macak M, Tsuchiya H, Taveira L, Aldabergerova S, Schmuki P (2005) Angew Chem Int Ed 44:7463

    Article  CAS  Google Scholar 

  14. Mack JM, Tsuchiya H, Schmuki P (2005) Angew Chem Int Ed 44:2100

    Article  Google Scholar 

  15. Tian ZRR, Voigt JA, Liu J, McKenzie B, Xu HF (2003) J Am Chem Soc 125:12384

    Article  CAS  Google Scholar 

  16. Chen Q, Zhou WZ, Du GH, Peng LH (2002) Adv Mater 14:1208

    Article  CAS  Google Scholar 

  17. Yao BD, Chan YF, Zhang XY, Zhang WF, Yang ZY, Wang N (2003) Appl Phys Lett 82:281

    Article  CAS  Google Scholar 

  18. Guo YG, Hu JS, Liang HP, Wan LJ, Bai CL (2005) Adv Funct Mater 15:196

    Article  CAS  Google Scholar 

  19. Chu SZ, Wada K, Inoue S, Todoroki S (2002) Chem Mater 14:266

    Article  CAS  Google Scholar 

  20. Jung JH, Kobayashi H, Bommel KJC, Shinkai S, Shimizu T (2002) Chem Mater 14:1445

    Article  CAS  Google Scholar 

  21. Limmrt SJ, Cao G (2003) Adv Mater 15:428

    Google Scholar 

  22. Goldberger J, He R, Lee S, Zhang Y, Yan H, Choi H, Yang P (2003) Nature 422:599

    Article  CAS  Google Scholar 

  23. Hwang J, Min B, Lee JS, Keem K, Cho K, Sung MY, Lee MS, Kim S (2004) Adv Mater 16:422

    Article  CAS  Google Scholar 

  24. Lee JH, Leu IC, Hsu MC, Chung YW, Hon MH (2005) J Phys Chem B 109:13056

    Article  CAS  Google Scholar 

  25. Qiu JJ, Yu WD, Gao XD, Li XM (2006) Nanotechnology 17:4695

    Article  CAS  Google Scholar 

  26. Ohyama M, Kozuka H, Yoko T (1997) Thin Solid Films 306:78

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was financially supported by National Natural Science Foundation of China (NSFC No. 50302013 and 50502038), the National Natural Science Foundation of Shanghai (No. 05ZR14132), and Shanghai-Applied Materials Research and Development Fund (06SA07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jijun Qiu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, J., Yu, W., Gao, X. et al. The evolution of morphology of ordered porous TiO2 films fabricated from sol-gel method assisted ZnO nanorod template. J Sol-Gel Sci Technol 44, 235–239 (2007). https://doi.org/10.1007/s10971-007-1613-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-007-1613-z

Keywords

Navigation