Skip to main content
Log in

Preparation and properties of polyamide–titania nanocomposites

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Transparent poly(trimethylhexamethyleneterephthalamide) based titania nanocomposites were prepared by the in-situ generation of inorganic network structure via the sol-gel process. Different concentrations of tetrapropylorthotitanate (TPOT) were added to the polyamide solution dissolved in anhydrous dimethylforamide (DMF). After thorough mixing, TPOT was hydrolyzed and condensed to produce titania network in the matrix using diethylamine as catalyst. Thin and transparent composite films with various amounts of titania were cast by solvent elution technique. These films were subjected for their optical, mechanical, thermal and morphological analyses. Tensile strength of the films was found to increase with increase in titania concentration relative to pure polymer and maximum strength was obtained for 5–wt% titania, but elongation at break was observed to decrease sharply on addition of titania. Dynamic mechanical thermal analysis (DMTA) carried out on the samples showed a systematic increase in the glass transition temperature, i.e., 101 °C with pure polyamide to 155 °C with composites containing 10-wt% titania contents. The storage modulus was also found to increase with increase in titania contents in the matrix. The decrease in the storage modulus of the hybrids with rise in temperature was observed to be much smaller as compared to that of pure polymer. Thermal decomposition temperatures of the hybrids were found in the range of 450–500 °C. The weights of the residues left at 700 °C were nearly proportional to the titania contents in the original hybrids. SEM observations indicated titania network structure dispersion at nanometer-level in the matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Brinker CJ, Scherer GW (1990) Sol–gel science: the physics and chemistry of sol–gel processing. Academic Press, Boston

    Google Scholar 

  2. Hench LL, West JK (1990) Chem Rev 90:33

    Article  CAS  Google Scholar 

  3. Mark JE (1992) J Appl Polym Sci Appl Polym Symp 50:273

    Article  CAS  Google Scholar 

  4. Mark JE (1991) J Inorg Organomet Polym 1:431

    Article  CAS  Google Scholar 

  5. Schmidt H (1994) J Sol–Gel Sci Technol 1:217

    Article  CAS  Google Scholar 

  6. Betrabet SC, Wilkes GL (1994) J Inorg Organomet Polym 4:343

    Article  CAS  Google Scholar 

  7. Schmidt H, Kasemann R, Burkhart T, Wagner G, Arpac E, Geiter E (1995) In: Mark JE, Lee CY-C, Bianconi PA (eds) Hybrid organic–inorganic composites. ACS Symp Ser 585, Washington, DC, p 331

  8. Gaw K, Suzuki H, Kakimoto M, Imai Y (1995) J Photopolym Sci Technol 8:307

    CAS  Google Scholar 

  9. Kita H, Saiki H, Tanaka K, Okamoto K (1995) J Photopolym Sci Technol 8:315

    CAS  Google Scholar 

  10. Mark JE, Wang S, Ahmad Z (1995) Macromol Chem Symp 98:731

    CAS  Google Scholar 

  11. Cassidy PE (1980) Thermally stable polymers. Marcel Dekker, New York

    Google Scholar 

  12. Crichley JP, Knight GJ, Wright WW (1983) Heat resistant polymers. Plenum Press, New York

    Google Scholar 

  13. Morgan PW (1963) J Polym Sci Part C 4:1075

    Article  Google Scholar 

  14. Wolfe JF (1987) Enycl Polym Sci Eng 3:635

    Google Scholar 

  15. Wang S, Ahmad Z, Mark JE (1993) Polym Bullet 31:323

    Article  CAS  Google Scholar 

  16. Ahmad Z, Wang S, Mark JE (1993) ACS Div Polym Chem Polym Prepr 34(2):745

    CAS  Google Scholar 

  17. Ahmad Z, Wang S, Mark JE (1994) In: Sanchez C, Brinker CJ, Mecartney ML, Cheetham A (eds) Better ceramics through chemistry, Part VI. Material research society, Pittsburgh

  18. Ahmad Z, Sarwar MI, Mark JE (1997) J Mater Chem 7(2):259

    Article  CAS  Google Scholar 

  19. Ahmad Z, Sarwar MI, Mark JE (1997) J Appl Polym Sci 63:1345

    Article  CAS  Google Scholar 

  20. Ahmad Z, Sarwar MI, Krug H, Schmidt H (1997) Int J Polym Mater 39:127

    Article  Google Scholar 

  21. Ahmad Z, Sarwar MI, Wang S, Mark JE (1997) Polymer 38(17):4523

    Article  CAS  Google Scholar 

  22. Ahmad Z, Sarwar MI, Mark JE (1998) J Appl Polym Sci 70:297

    Article  CAS  Google Scholar 

  23. Asif KM, Sarwar MI, Rafiq S, Ahmad Z (1998) Polym Bullet 40:583

    Article  CAS  Google Scholar 

  24. Rehman HU, Sarwar MI, Ahmad Z, Krug H, Schmidt H (1997) J Non-Cryst Solids 211:105

    Article  CAS  Google Scholar 

  25. Sarwar MI, Ahmad Z (1997) Adv Mater 97:73

    Google Scholar 

  26. Ahmad Z, Sarwar MI, Krug H, Schmidt H (1997) Die Angew Makromol Chemie 248:139

    Article  CAS  Google Scholar 

  27. Wang S, Ahmad Z, Mark JE (1994) Polym Mater Sci Eng 70(1):305

    Google Scholar 

  28. Wang S, Ahmad Z, Mark JE (1994) Macromol Reports 31:411

    Google Scholar 

  29. Ahmad Z, Wang S, Mark JE (1994) Polym Mater Sci Eng 70(1):425

    Google Scholar 

  30. Wang S, Ahmad Z, Mark JE (1994) Chem Mater 6:943

    Article  CAS  Google Scholar 

  31. Ahmad Z, Wang S, Mark JE (1994) Polym Mater Sci Eng 70(1):303

    Google Scholar 

  32. Chen JP, Ahmad Z, Wang S, Mark JE, Arnold FE (1995) In: Mark JE, Lee CY-C, Bianconi PA (eds) Hybrid organic–inorganic composites. ACS Symp Ser 585, Washington, DC, pp 297

  33. Ahmad Z, Wang S, Mark JE (1995) In: Mark JE, Lee CY-C, Bianconi PA (eds) Hybrid organic–inorganic composites. ACS Symp Ser 585, Washington, DC, pp 291

  34. Rodrigues DE, Brennan AB, Betrabet C, Wang B, Wilkes GL (1992) Chem Mater 4(6):1437

    Article  CAS  Google Scholar 

  35. Mascia L, Kioul A (1994) J Mater Sci Lett 13(9):641

    Article  CAS  Google Scholar 

  36. Suzuki F, Onozato K, Kurokawa Y (1990) J Appl Polym Sci 39:9371

    Article  Google Scholar 

  37. Kakimoto M, Iyoku Y, Morikawa A, Yamaguchi H, Imai Y (1994) ACS Div Polym Chem Polym Prepr 35(1):393

    CAS  Google Scholar 

Download references

Acknowledgements

Special thanks are due to Professor Dr. Gerhard Wegner and Dr. Ingo Lieberwirth of Max Planck Institute for Polymer Research, Mainz, Germany, for providing the SEM measurement facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Ilyas Sarwar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarwar, M.I., Zulfiqar, S. & Ahmad, Z. Preparation and properties of polyamide–titania nanocomposites. J Sol-Gel Sci Technol 44, 41–46 (2007). https://doi.org/10.1007/s10971-007-1591-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-007-1591-1

Keywords

Navigation