Skip to main content
Log in

Fissuring and Fragmentation Removal During Sol–Gel Catalytic Materials Synthesis: An Experimental Design Approach

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Statistical designs were used to investigate the effects of various processing conditions on the fissuring and/or fragmentation of sol–gel catalytic materials. Three types of sol–gel materials were studied: SiO2, TiO2-doped SiO2 and CeO2-doped SiO2. Five processing variables were investigated: the quantity of water included in the sol–gel preparation, the amount of TiO2 or CeO2 precursors, the mixing time, the gelation time and the influence of treatment in an oven at 40C prior to the heating treatment (pre-heating time). Processing variables were set at high and low limits in three different 24 full-factorial designs. As notable results, the water content appeared to be a critical processing variable in every studied factorial designs. Pre-heating time was also significant for SiO2 gels. Finally the amount of CeO2 precursor and the gelation time were found to be influential for the synthesis of non-cracked CeO2-doped SiO2 sol–gel monoliths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C. Anderson and A.J. Bard, J. Phys. Chem. 99, 9882 (1995).

    CAS  Google Scholar 

  2. C.J. Brinker and G.W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, San Diego, 1990), p. 226.

    Google Scholar 

  3. C. Agrafiotis, A. Tsetsekou, C.J. Stournaras, A. Julbe, L. Dalmazio, and C. Guizard, J. Eur. Ceram. Soc. 22, 15 (2002).

    CAS  Google Scholar 

  4. A. Trovarelli, M. Boaro, E. Rocchini, C. de Leilinburg, and G. Dolcetti, J. Alloy. and Compd. 323/324, 584 (2001).

    Google Scholar 

  5. M. Thammachart, V. Meeyoo, T. Risksomboon, and S. Osuwan, Catal. Today 68, 53 (2001).

    CAS  Google Scholar 

  6. M. Schneider and A. Baiker, Catal. Rev. Sci. Eng. 37(4), 515 (1995).

    CAS  Google Scholar 

  7. Y. Zhang, G. Xiong, N. Yao, W. Yang, and X. Fu, Catal. Today 68, 89 (2001).

    CAS  Google Scholar 

  8. J.C. Yu, J. Lin, and R.W.M. Kwok, J. Photochem. Photobio. A 111, 199 (1997).

    CAS  Google Scholar 

  9. M. Kang, Appl. Catal. B: Environ. 37, 187 (2002).

    CAS  Google Scholar 

  10. V. Héquet, C. Gonzalez, and P. Le Cloirec, Wat. Res. 35(18), 4253 (2001).

    Google Scholar 

  11. R.N. Viswanath, A. Chandra Bose, and J. Ramasamy, J. Phys. Chem. Solids 62, 1991 (2001).

    CAS  Google Scholar 

  12. T. Tulun and H. Akinci, Ceram. Int. 23, 141 (1997).

    CAS  Google Scholar 

  13. A. Patra, G. De, D. Kundu, and D. Ganguli, Mater. Lett. 42, 200 (2000).

    CAS  Google Scholar 

  14. R. Neumann and M. Levin-Elad, J. Catal. 166, 206 (1997).

    CAS  Google Scholar 

  15. F. Garbassi and L. Balducci, Micropor. Mesopor. Mat. 47, 51 (2001).

    CAS  Google Scholar 

  16. R. Reisfeld, A. Patra, G. Panczer, and M. Gaft, Opt. Mater. 13, 81 (1999).

    CAS  Google Scholar 

  17. E.R. Rand, M.B. Smuckler, E. Go, M.S. Bradley, and J.W. Bruno, Inorg. Chim. Acta 233, 71 (1995).

    CAS  Google Scholar 

  18. B. Zhu, Z. Luo, and C. Xia, Mater. Res. Bull. 34(10/11), 1507 (1999).

    CAS  Google Scholar 

  19. X. Gao and J.E. Wachs, Catal. Today 51, 233 (1999).

    CAS  Google Scholar 

  20. Z. Deng, J. Wanga, Y. Zhang, Z. Wenga, Z. Zhanga, B. Zhara, J. Shena, and L. Chenga, Nanostruct. Mater. 11, 1313 (1999).

    CAS  Google Scholar 

  21. A.E. Stiegman, H. Eckert, G. Plett, S.S. Kim, M. Anderson, and A. Yavrouian, Chem. Mater. 5(11), 1591 (1993).

    CAS  Google Scholar 

  22. M.D. Curran, D.D. Pooré, and A.E. Stiegman, Chem. Mater. 10, 3156 (1998).

    CAS  Google Scholar 

  23. E.P. Box, W.G. Hunter, and J.S. Hunter, Statistics for experimenters. An introduction to design, data analysis, and model building (Wiley series in probability and mathematical statistics, 1978), p. 306.

  24. P. Saravanan, V. Selvarajan, S.V. Joshi, and Sundararajn, J. Phys. D: Appl. Phys. 34, 131 (2001).

    CAS  Google Scholar 

  25. M.C. Gacula Jr. and J. Singh, Statistical Methods in Food and Consumer Research (Academic Press, Orlando, 1984), p. 62 and p. 176.

    Google Scholar 

  26. J.-N. Baléo, B. Bourges, P. Courcoux, C. Faur-Brasquet, and P. Le Cloirec, Méthodologie expérimentale, (Tec & Doc, Lavoisier, Paris, 2003).

    Google Scholar 

  27. J. Goupy, La méthode des plans d’expériences. Optimisation du choix des essais et de l’interprétation des résultats, (DUNOD, Paris, 1996).

    Google Scholar 

  28. G. Sado and M.-C. Sado, Les plans d’expériences, De l’expérimentation à l’assurance qualité, (AFNOR technique, 1991).

  29. W.R. Ott, Environmental Statistics and Data Analysis (Lewis Publishers, CRC Press, Boca Raton, 1995).

    Google Scholar 

  30. G.W. Scherer, J. Non-Cryst Solids 109, 171 (1989).

    CAS  Google Scholar 

  31. J. Zarzycki, M. Prassas, and J. Phalippou, J. Mater. Sci. 17, 3371 (1982).

    CAS  Google Scholar 

  32. R.K. Dwidevi, J. Mater. Sci. Lett. 5, 373 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. HÉquet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raillard, C., HÉquet, V., Le Cloirec, P. et al. Fissuring and Fragmentation Removal During Sol–Gel Catalytic Materials Synthesis: An Experimental Design Approach. J Sol-Gel Sci Technol 34, 5–14 (2005). https://doi.org/10.1007/s10971-005-1257-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-005-1257-9

Keywords

Navigation