Skip to main content
Log in

A study of some research work on soil radon concentration and ionospheric total electron content as earthquake precursors

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

This review discusses some research on two earthquake precursors—soil radon concentration, a geochemical precursor; and Total Electron Content (TEC), an atmospheric one, studied in some earthquake-prone regions in the world. These two precursors were chosen because their generation mechanisms are interlinked. The selected soil radon studies focused on establishing anomalous radon fluctuations as a robust precursory signal for medium to high-magnitude earthquakes, including determination and removal of meteorological effects from soil radon time series, and identification of genuine pre-seismic anomalies. For the seismic precursory property of TEC, studies on detecting seismogenic TEC fluctuations and their formation mechanisms were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Aarons J (1982) Global morphology of ionospheric scintillation. Proc IEEE 70:360–378

    Article  Google Scholar 

  2. Ambrosino F, Thinová L, Briestensky M, Šebela S, Sabbarese C (2020) Detecting time series anomalies using hybrid methods applied to Radon signals recorded in caves for possible correlation with earthquakes. Acta Geod Geoph 55(1–6):1–16

    Google Scholar 

  3. Antsilevich MG (1971) An attempt to forecast the moments of origin of recent tremors of the Tashkhent earthquake through observations of the variation of radon. Izv Akad Nauk Uzb SSR, 188–200

  4. Arora BR, Kumar A, Walia V, Yang T-F, Fu C-C, Liu T-K, Wen K-L, Chen C-H (2017) Assessment of the response of the meteorological/hydrological parameters on the soil gas radon emission at Hsinchu, northern Taiwan: a prerequisite to identify earthquake precursors. J Asian Earth Sci 149:49–63

    Article  Google Scholar 

  5. Asimov MS, Yerzhanov SK, Nersesov IL, Ulomov VI (1979) The state of earthquake prediction research in the Soviet Republics of Central Asia. International Symposium on Earthquake Prediction, Rep. III-12, UNESCO, Paris, France

  6. Barman C, Ghose D, Sinha B, Deb A (2016) Detection of earthquake induced radon precursors by Hilbert-Huang Transform. J Appl Geophys 133:123–131

    Article  Google Scholar 

  7. Baykut S, Akgül T, İnan S, Seyis C (2010) Observation and removal of daily quasi-periodic components in soil radon data. Radiat Meas 45(4):872–879

    Article  CAS  Google Scholar 

  8. Brady BT (1974) Theory of earthquakes. Pure Appl Geophys 112(4):701–725

    Article  Google Scholar 

  9. Budden KG (1985) The propagation of radio waves. Cambridge University Press, New York, p 669

    Book  Google Scholar 

  10. Buonsanto MJ, Fuller-Rowell TJ (1997) Strides made in understanding space weather at Earth. EOS Trans Am Geophys Union 781:1–7

    Article  Google Scholar 

  11. Calais E, Minster JB (1995) GPS detection of ionospheric perturbations following the January 17, 1994, Northridge earthquake. Geophys Res Lett 22:1045–1048

    Article  Google Scholar 

  12. Calais E, Amarjargal S (2000) New constraints on current deformation in Asia from continuous GPS measurements at Ulan Baatar, Mongolia. Geophys Res Lett 27:1527–1530

    Article  Google Scholar 

  13. Catherine JK (2004) A preliminary assessment of internal deformation in the Indian Plate from GPS measurements. J Asian Earth Sci 23:461–465

    Article  Google Scholar 

  14. Chaudhuri H, Bari W, Iqbal N, Bhandari RK, Ghose D, Sen P, Sinha B (2011) Long range gas-geochemical anomalies of a remote earthquake recorded simultaneously at distant monitoring stations in India. Geochem J 45:137–156

    Article  CAS  Google Scholar 

  15. Chelnokov G, Zharkov R, Bragin I (2015) Radon monitoring in groundwater and soil gas of Sakhalin Island. J Geosci Environ Prot 3:48–53

    Google Scholar 

  16. Chuo YJ, Liu JY, Pulinets SA (2001) Ionospheric foF2 variations prior to strong earthquakes in Taiwan area. Adv Space Res 27:1305–1310

    Article  Google Scholar 

  17. Chuo YJ, Liu JY, Pulinets SA, Chen YI (2002) The ionospheric perturbations prior to Chi-Chi and Chia-Yi earthquakes. J Geodyn 33:509–517

    Article  Google Scholar 

  18. Cicerone RD, Ebel JE, Britton J (2009) A systematic compilation of earthquake precursors. Tectonophysics 476:371–396

    Article  Google Scholar 

  19. Cigolini C, Laiolo M, Coppola D (2015) The LVD signals during the early-mid stages of the L’Aquila seismic sequence and the radon signature of some aftershocks of moderate magnitude. J Environ Radioact 139:56–65

    Article  CAS  PubMed  Google Scholar 

  20. Clements WE (1974) PhD dissertation, N.M. Inst. of Min. and Technol., Socorro

  21. Danilov AD, Mikhailov AV (2001) F2-layer parameters long-term trends at the Argentine Islands and Port Stanley stations. In Annales Geophysicae 19:341–349

    Article  Google Scholar 

  22. Davies K (1990) Ionspheric radio. Peter Peregrinus Ltd.

    Book  Google Scholar 

  23. Deb A, Gazi M, Barman C (2016) Anomalous soil radon fluctuations – signal of earthquakes in Nepal and eastern India regions. J Earth Syst Sci 125:1657–1665

    Article  CAS  Google Scholar 

  24. Devi M, Barbara AK, Depueva A (2004) Association of total electron content (TEC) and foF2 variations with earthquake events at the anomaly crest region. Ann Geophys 47:83–91

    Google Scholar 

  25. Dewey JF, Bird JM (1970) Mountain belts and the new global tectonics. J Geophys Res 75:2625–2647

    Article  Google Scholar 

  26. Dobrovolsky IP, Zubkov SI, Miachkin VI (1979) Estimation of the size of earthquake preparation zones. Pure Appl Geophys 117:1025–1044

    Article  Google Scholar 

  27. Dutta HN, Dabas RS, Das RM, Sharma K, Singh B (2007) Ionospheric perturbations over Delhi caused by the 26 December 2004 Sumatra earthquake. Int J Remote Sens 28:3141–3151

    Article  Google Scholar 

  28. Evison F, Rhoades D (2001) Model of long-term seismogenesis. Ann Geophys 44(1):81–93

    Article  Google Scholar 

  29. Fanselow JL, Sovers OJ (1985) Observation model and parameter partial for the JPL VLBI Parameter Estimation Software MASTERFIT-V2. 0. Jet Propulsion Lab. Report, p.8339

  30. Fleischer RL, Mogro-Campero A (1978) Mapping of integrated radon emanation for detection of long-distance migration of gases within the earth: techniques and principles. J Geophys Res 83(B7):3539–3549

    Article  CAS  Google Scholar 

  31. Fleischer RL, Mogro-Campero A (1985) Association of subsurface radon changes in Alaska and the north eastern United States with earthquake. Geochim Cosmochim Acta 49(4):1061–1071

    Article  CAS  Google Scholar 

  32. Freund F (2011) Pre-earthquake signals: Underlying physical processes. J Asian Earth Sci 41:383–400

    Article  Google Scholar 

  33. Freund FT, Kulahci IG, Cyr G, Ling J, Winnick M, Tregloan-Reed J, Freund MM (2009) Air ionization at rock surfaces and pre-earthquake signals. J Atmos Solar Terr Phys 71:1824–1834

    Article  CAS  Google Scholar 

  34. Freund F, Stoic V (2013) Nature of pre-earthquake phenomena and their effects on living organisms. Animals (Basel) 3(2):513–531

    Article  PubMed  Google Scholar 

  35. Fuller-Rowell TJ, Codrescu MV, Moffett RJ, Quegan S (1994) Response of the thermosphere and ionosphere to geomagnetic storms. J Geophys Res Space Physics 99:3893–3914

    Article  Google Scholar 

  36. Fu C-C, Walia V, Yang T-F, Lee L-C, Liu T-K, Chen C-H, Kumar A, Lin S-J, Lai T-H, Wen K-L (2017) Preseismic anomalies in soil-gas radon associated with 2016 M 6.6 Meinong earthquake Southern Taiwan. Terrest Atmos Ocean Sci 28(5):787–798

    Article  Google Scholar 

  37. Fuying Z, Wu Y, Zhou Y, Lin J (2011) A statistical investigation of pre-earthquake ionospheric TEC anomalies. Geodesy Geodyn 2(1):61–65

  38. Ghosh D, Deb A, Haldar S, Sahoo SR, Sengupta R (2009) Radon time series and earthquake signals—a study by SSNTD at Matigara (Darjeeling), India. Earth Sci India 2:76–82

    Google Scholar 

  39. Gleeson M (2020) Earthquake early warning systems. Nat Rev Earth Environ 1:84

    Article  Google Scholar 

  40. Grant RA, Raulin JP, Freund FT (2015) Changes in animal activity prior to a major (M= 7) earthquake in the Peruvian Andes. Phys Chem Earth 85:69–77

    Article  Google Scholar 

  41. Groves KM, Basu S, Weber EJ, Smitham M, Kuenzler H, Valladares CE, Sheehan R, MacKenzie E, Secan JA, Ning P, McNeill WJ (1997) Equatorial scintillation and systems support. Radio Sci 32(5):2047–2064

    Article  Google Scholar 

  42. Gupta HK, Rao NP, Roy S, Arora K et al (2007) Investigations related to scientific deep drilling to study reservoir-triggered earthquakes at Koyna, India. Curr Sci 93:843–848

    Google Scholar 

  43. Hartmann J, Levy JK (2005) Hydrogeological and gasgeochemical earthquake precursors – a review for application. Nat Hazards 34:279–304

    Article  Google Scholar 

  44. Hatuda Z (1953) Memoirs of the college of science. Univ Kyoto Ser B 20:285–306

    Google Scholar 

  45. Hauksson E (1981) Radon content of ground water as an earthquake precursor: evaluation of the world-wide data and physical basis. J Geophys Res Solid Earth 86(B10):9397–9410

    Article  Google Scholar 

  46. Heki K, Enomoto Y (2013) Preseismic ionospheric electron enhancements revisited. J Geophys Res Space Physics 118:6618–6626

    Article  Google Scholar 

  47. Heki K, Enomoto Y (2015) Mw dependence of the preseismic ionospheric electron enhancements. J Geophys Res Space Physics 120:7006–7020

    Article  Google Scholar 

  48. Hirotaka U, Moriuchi H, Takemura Y, Tsuchida H, Fuiji I, Nakamura M (1988) Anomalously high radon discharge from the Atotsugawa fault prior to the western Nagano Prefecture earthquake (M 6.8) of September 14, 1984. Tectonophysics 152(1–2):147

    Google Scholar 

  49. Holford DJ, Schery SD, Wilson JL, Phillips FM (1993) Modelling radon transport in dry, cracked soil. J Geophys Res Solid Earth 98(B1):567–580

    Article  CAS  Google Scholar 

  50. Huang NE, Shen Z, Long SR, Wu CM, Shih HH, Zheng Q, Yen N-C, Tung C-C, Liu H-H (1998) The empirical mode decomposition and the spectrum for nonlinear and non-stationary time series analysis. Proc R Soc London A 454:903–995

    Article  Google Scholar 

  51. Hunscucker RD (1991) Radio techniques for probing the ionosphere. Springer-Verlag Berlin, Heidelberg, New York

  52. Igarashi G, Wakita H (1990) Groundwater radon anomalies associated with earthquakes. Tectonophysics 180:237–254

    Article  Google Scholar 

  53. Jaishi HP, Singh S, Tiwari RP, Tiwari RC (2014) Correlation of radon anomalies with seismic events along Mat fault in Serchhip District, Mizoram, India. Appl Radiat Isot 86:79–84

    Article  CAS  PubMed  Google Scholar 

  54. Jin S, Jin R, Li JH (2014) Pattern and evolution of seismo-ionospheric disturbances following the 2011 Tohoku earthquakes from GPS observations. J Geophys Res Space Phys 119:7914–7927

    Article  Google Scholar 

  55. Jinyun G, Li W, Liu X, Chao X, Zhao C (2015) On TEC anomalies as precursor before MW 8.6 Sumatra earthquake and MW 6.7 Mexico earthquake on April 11, 2012. Geosci J 19:721–730

    Article  Google Scholar 

  56. Keilis-Borok VI, Soloviev AA (eds) (2003) Nonlinear dynamics of the lithosphere and earthquake prediction. Springer-Verlag, Berlin

    Google Scholar 

  57. Kelley MC (2009) The earth’s ionosphere: plasma physics and electrodynamics. Elsevier, Amsterdam, Netherlands

  58. Kim VP, Pulinets SA, Hegai VV (2002) Theoretical model of possible disturbances in the night time mid-latitude ionospheric D region over an area of strong-earthquake preparation. Radiophys Quantum Electron 45:262–268

    Article  CAS  Google Scholar 

  59. King CY (1978) Radon emanation on San Andreas fault. Nature 271(5645):516–519

    Article  CAS  Google Scholar 

  60. King CY (1980) Episodic radon changes in subsurface soil gas along active faults and possible relation to earthquakes. J Geophys Res 85:3065–3078

    Article  CAS  Google Scholar 

  61. King CY, Slater LE (1978) A comparison of soil gas radon and crustal strain data. Earthq Notes 49(4):44

    Google Scholar 

  62. Komjathy A (1997) Global Ionospheric Total Electron Content Mapping Using the Global Positioning System. PhD dissertation, Department of Geodesy and Geomatics Engineering Technical Report No. 188, University of New Brunswick, Canada

  63. Kumar S, Singh AK (2017) Ionospheric precursors observed in TEC due to earthquake of Tamenglong on 3 January 2016. Curr Sci 113(4):795–801

  64. Kumar A, Walia V, Arora BR, Yang T-F, Lin S-J, Fu C-C, Chen C-H, Wen K-L (2015) Identifications and removal of diurnal and semidiurnal variations in radon time series data of Hsinhua monitoring station in SW Taiwan using singular spectrum analysis. Nat Hazards 79:317–330

    Article  Google Scholar 

  65. Külahcı F, İnceöz M, Doğru M, Aksoy E, Baykara O (2009) Artificial neural network model for earthquake prediction with radon monitoring. Appl Radiat Isot 67(1):212–219

    Article  PubMed  Google Scholar 

  66. Le H, Liu JY, Liu L (2011) A statistical analysis of ionospheric anomalies before 736 M 6.0+ earthquakes during 2002–2010. J Geophys Res Space Phys. https://doi.org/10.1029/2010JA015781

    Article  Google Scholar 

  67. Lee S, Ha K, Hamm S, Ko K (2013) Groundwater responses to the 2011 Tohoku Earthquake on Jeju Island. Korea Hydrol Process 27(8):1147–1157

    Article  Google Scholar 

  68. Leick A, Surveying GS (1995) John Wiley & Sons, New York, p. 560.

  69. Liu JY, Tsai HF, Jung TK (1996) Total electron content obtained by using the global positioning system. Terrest Atmos Ocean Sci 7:107–117

    Article  Google Scholar 

  70. Liu JY, Chen YI, Pulinets SA, Tsai HF, Chuo YJ (2000) Seismo-ionospheric signatures prior to M≥ 6.0 Taiwan earthquakes. Geophys Res Lett 27:3113–3116

    Article  Google Scholar 

  71. Liu JY, Chuo YJ, Pulinets SA, Tsai HF (2000b) A study on the TEC perturbations prior to the Rei-Li, Chi-Chi and Chia-Yi earthquakes. Proceedings of IWSE2000 Workshop, Tokyo, September 2000.

  72. Liu JY, Chuo YJ, Chen YI (2001) Ionospheric GPS TEC perturbations prior to the 20 September 1999, Chi-Chi earthquake. Geophys Res Lett 28:1383–1386

    Article  CAS  Google Scholar 

  73. Liu JY, Chuo YJ, Shan SJ, Tsai YB, Chen YI, Pulinets SA, Yu SB (2004) Pre-earthquake ionospheric anomalies registered by continuous GPS TEC measurements. Ann Geophys 22:1585–1593

    Article  Google Scholar 

  74. Liu JY, Chen YI, Chen CH, Hattori K (2010) Temporal and spatial precursors in the ionospheric global positioning system (GPS) total electron content observed before the 26 December 2004 M 9.3 Sumatra-Andaman earthquake. J Geophys Res 115:A09312

  75. Liu JY, Le H, Chen YI, Chen CH, Liu L, Wan W, Su YZ, Sun YY, Lin CH, Chen MQ (2011) Observations and simulations of seismo-ionospheric GPS total electron content anomalies before the 12 January 2010 M7 Haiti earthquake. J Geophys Res Space Physics 116:1–9

    Google Scholar 

  76. Lomnitz C (1994) Fundamentals of Earthquake Prediction. Wiley, USA, p 326

    Google Scholar 

  77. Malik JN, Nakata T (2003) Active faults and related late quaternary deformation along the northwestern Himalayan Frontal zone, India. Ann Geophys 46:917–936

    Google Scholar 

  78. Mignan A, Broccardo M (2020) Neural network applications in earthquake prediction (1994–2019): meta-analytic and statistical insights on their limitations. Seismol Res Lett 91(4):2330–2342

    Article  Google Scholar 

  79. Mjachkin VI, Brace WF, Sobolev GA, Dieterich JH (1975) Two models for earthquake forerunners. Pure Appl Geophys 113(1):169–181

    Article  Google Scholar 

  80. Mogi K (1974) Regularities in the spatial and temporal distribution of large earthquakes and earthquake prediction. In: Symposium on earthquake forerunners searching, Tashkent, USSR

  81. Monnin M, Seidel JL (1998) An automatic radon probe for Earth science studies. J Appl Geophys 39:209–220

    Article  Google Scholar 

  82. Moustra M, Avraamides M, Christodoulou C (2011) Artificial neural networks for earthquake prediction using time series magnitude data or Seismic Electric Signals. Expert Syst Appl 38(12):15032–15039

    Article  Google Scholar 

  83. Namvaran M, Negarestani A (2012) Measuring the radon concentration and investigating the mechanism of decline prior an earthquake (Jooshan, SE of Iran). J Radioanal Nucl Chem 298:1–8

    Article  Google Scholar 

  84. Nevinsky I, Tsvetkova T, Nevinskaya E (2015) Measurement of radon in ground waters of the Western Caucasus for seismological application. J Environ Radioact 149:19–35

    Article  CAS  PubMed  Google Scholar 

  85. Nevinsky I, Tsvetkova T, Dorgu M, Aksoy E, Inceoz M, Baykara O, Kulahcı F, Melikadze G, Akkurt I, Kulali F, Vogiannis E, Pitikakis E, Katsanou K, Lambrakis N (2018) Results of the simultaneous measurements of radon around the Black Sea for seismological applications. J Environ Radioact 192:48–66

    Article  CAS  PubMed  Google Scholar 

  86. Nikolopoulos D, Petraki E, Marousaki A, Potirakis S, Koulouras G, Nomicos C, Panagiotaras D, Stonham J, Luizi A (2012) Environmental monitoring of radon in soil during a very seismically active period in South West Greece. J Environ Monit 14:564–578

    Article  CAS  PubMed  Google Scholar 

  87. Norsuzila Y, Abdullah M, Ismail M, Ibrahim M, Zakaria Z (2010) Total Electron Content (TEC) and estimation of positioning error using Malaysia data. Proceedings of the World Congress on Engineering, London, June 30-July 2, p. 715–719

  88. Oh Y, Kim G (2015) A radon-thoron isotope pair as a reliable earthquake precursor. Sci Rep 5:13084. https://doi.org/10.1038/srep13084

    Article  CAS  Google Scholar 

  89. Okabe S (1956) Memoirs of the College of Science. Univ Kyoto Ser A 28(2):99

    Google Scholar 

  90. Oikonomou C, Haralambous H, Pulinets SA, Khadka A, Paudel SR, Barta V, Muslim B, Kourtidis K, Karagioras A, Inyurt S (2021) Investigation of pre-earthquake ionospheric and atmospheric disturbances for three large earthquakes in Mexico. Geosciences 11:16–43

    Article  CAS  Google Scholar 

  91. Ouzounov D, Pulinets SA, Alexey RA, Konstantin T, Dimitri D, Menas K, Patrick T (2011) Atmosphere-ionosphere response to the M9 Tohoku earthquake revealed by multi-instrument space-borne and ground observations: preliminary results. Earthq Sci 24:1–7

    Article  Google Scholar 

  92. Ouzounov DP, Pulinets SA, Davidenko D, Hattori K, Kafatos M, Taylor PT (2012) Multi-sensor observations of earthquake related atmospheric signals over major geohazard validation sites. In AGU Fall Meeting Abstracts, 2012, p. NH44A-05

  93. Pérez NM, Hernández PA, Igarashi G, Trujillo I, Nakai S, Sumino H, Wakita H (2008) Searching and detecting earthquake geochemical precursors in CO2-rich groundwaters from Galicia, Spain. Geochem J 42:75–83

    Article  Google Scholar 

  94. Popova I, Rozhnoi A, Solovieva M, Levin B, Hayakawa M, Hobara Y, Biagi PF, Schwingenschuh K (2013) Neural network approach to the prediction of seismic events basedon low-frequency signal monitoring of the Kuril-Kamchatkaand Japanese regions. Ann Geophys 56(3):R0328

    Google Scholar 

  95. Priyadarshi S, Kumar S, Singh AK (2011) Changes in total electron content associated with earthquakes (M> 5) observed from GPS station, Varanasi, India. Geomat Nat Haz Risk 2:123–139

    Article  Google Scholar 

  96. Pulinets SA (1998) Seismic activity as a source of the ionospheric variability. Adv Space Res 22:903–906

    Article  Google Scholar 

  97. Pulinets SA (2004) Ionospheric precursors of earthquakes: recent advances in theory and practical applications. Terrestr Atmos Ocean Sci 15:413–436

    Article  Google Scholar 

  98. Pulinets SA (2007) Natural radioactivity, earthquakes, and the ionosphere. EOS Trans Am Geophys Union 88:217–218

    Article  Google Scholar 

  99. Pulinets SA (2009) Physical mechanism of the vertical electric field generation over active tectonic faults. Adv Space Res 44:767–773

    Article  CAS  Google Scholar 

  100. Pulinets SA (2011) The synergy of earthquake precursors. Earthq Sci 24:535–548

    Article  Google Scholar 

  101. Pulinets SA (2011) A multi parameter approach to earthquake forecasting. Exec Intell Rev 38:26–35

    Google Scholar 

  102. Pulinets SA (2012) Low-latitude atmosphere-ionosphere effects initiated by strong earthquakes preparation process. Int J Geophys 14(2):1–14

    Article  Google Scholar 

  103. Pulinets SA, Boyarchuk KA, Hegai VV, Kim VP, Lomonosov AM (2000) Quasielectrostatic model of atmosphere-thermosphere-ionosphere coupling. Adv Space Res 26:1209–1218

    Article  CAS  Google Scholar 

  104. Pulinets SA, Boyarchuk KA, Hegai VV, Karelin AV (2002) Conception and model of seismo-ionosphere-magnetosphere coupling. Seismo-Electromagn Lithosp Atmosp Ionosp Coupl. pp 353–361

  105. Pulinets SA, Legen’ka AD (2003) Spatial–temporal characteristics of large-scale disturbances of electron density observed in the ionospheric f-region before strong earthquakes. Cosm Res 41:221–230

    Article  Google Scholar 

  106. Pulinets SA, Boyarchuk K (2004) Ionospheric precursors of earthquakes. Springer, Berlin

    Google Scholar 

  107. Pulinets SA, Leyva-Contreras A, Bisiacchi-Giraldi G, Ciraolo L (2005) Total electron content variations in the ionosphere before the Colima, Mexico, earthquake of 21 January 2003. Geof Int 44:369–377

    Article  Google Scholar 

  108. Pulinets SA, Ouzounov D, Karelin AV, Boyarchuk KA, Pokhmelnykh LA (2006) The physical nature of thermal anomalies observed before strong earthquakes. Phys Chem Earth 31:143–153

    Article  Google Scholar 

  109. Pulinets SA, Leyva-Contreras A, Bisiacchi-Giraldi G, Ciraolo L (2007) Natural radioactivity, earthquakes, and the ionosphere. Eos 88:217–224

    Article  Google Scholar 

  110. Pulinets SA, Ouzounov D (2011) Lithosphere–Atmosphere–Ionosphere Coupling (LAIC) model–A unified concept for earthquake precursors validation. J Asian Earth Sci 41:371–382

    Article  Google Scholar 

  111. Pulinets SA, Ouzounov DP, Karelin AV, Davidenko DV (2015) Physical bases of the generation of short-term earthquake precursors: a complex model of ionization-induced geophysical processes in the lithosphere-atmosphere-ionosphere-magnetosphere system. Geomag Aeron 55:521–538

    Article  Google Scholar 

  112. Ramola RC, Singh S, Virk HS (1988) A model for the correlation between radon anomalies and magnitude of earthquakes. Int J Radiat Appl Instrum Part D Nucl Tracks Radiat Measur 15(1–4):689–692

    Article  CAS  Google Scholar 

  113. Ramola RC, Singh M, Sandhu AS, Singh S, Virk HS (1990) The use of radon as an earthquake precursor. Int J Radiat Appl Instrum Part E Nucl Geophys 4(2):275–287

    Google Scholar 

  114. Ramola RC, Choubey VM (2003) Measurement of radon exhalation rate from soil samples of Garhwal Himalaya, India. J Radioanal Nucl Chem 256(2):219–223

    Article  CAS  Google Scholar 

  115. Ramola RC, Prasad Y, Prasad G, Kumar S, Choubey VM (2008) Soil-gas radon as seismotectonic indicator in Garhwal Himalaya. Appl Radiat Isot 66(10):1523–1530

    Article  CAS  PubMed  Google Scholar 

  116. Rastogi BK, Chadha RK, Raju IP (1986) Seismicity near Bhatsa Reservoir, Maharashtra, India. Phys Earth Planet Inter 44(2):179–199

    Article  Google Scholar 

  117. Reimer GM (1990) Soil gas helium increase preceding the Loma Prieta Earthquake. Eos, Trans-American Geophysical Union 71:289

    Google Scholar 

  118. Reyes J, Morales-Esteban A, Martínez-Álvarez C (2013) Neural networks to predict earthquakes in Chile. Appl Soft Comput 13:1314–1328

    Article  Google Scholar 

  119. Rikitake T (1987) Earthquake precursors in Japan: precursor time and detectability. Tectonophysics 136:265–282

    Article  Google Scholar 

  120. Sahoo SK, Katlamudi M, Barman C, Udaya Lakshmi G (2020) Identification of earthquake precursors in soil radon-222 data of Kutch, Gujarat, India using empirical mode decomposition based Hilbert-Huang Transform. J Environ Radioact 222:106353

    Article  CAS  PubMed  Google Scholar 

  121. Sardon E, Rius A, Zarraoa N (1994) Estimation of the transmitter and receiver differential biases and the ionospheric total electron content from Global Positioning System observations. Radio Sci 29:577–586

    Article  Google Scholar 

  122. Schery SD, Gaeddert DH, Wilkening MH (1984) Factors affecting exhalation of radon from a gravelly sandy loam. J Geophys Res 89:7299–7300

    Article  CAS  Google Scholar 

  123. Schery SD, Siegel D (1986) The role of channels in the transport of radon from the soil. J Geophys Res Solid Earth 91(B12):12366–12374

    Article  Google Scholar 

  124. Scholz CH, Sykes LR, Aggarwal YP (1973) Earthquake prediction: a physical basis. Science 181(4102):803–810

    Article  CAS  PubMed  Google Scholar 

  125. Shah M, Jin S (2015) Statistical characteristics of seismo-ionospheric GPS TEC disturbances prior to global Mw ≥ 5.0 earthquakes (1998–2014). J Geodyn 92:42–49

    Article  Google Scholar 

  126. Shapiro MH, Rice A, Mendenhall MH, Melvin JD, Tombrello TA (1985) Recognition of environmentally caused variations in radon time series. Pure Appl Geophys 122:309–326

    Article  Google Scholar 

  127. Sharma ML, Lindholm C (2012) Earthquake hazard assessment for Dehradun, Uttarakhand, India, including a characteristic earthquake recurrence model for the Himalaya Frontal Fault (HFF). Pure Appl Geophys 169:1601–1617

    Article  Google Scholar 

  128. Sharma G, Champati Ray PK, Mohanti S, Kannaujiya S (2017) Ionospheric TEC modeling for earthquakes precursors from GNSS data. Quatern Int 462:65–74

    Article  Google Scholar 

  129. Singh M, Ramola RC, Singh B, Singh S, Virk HS (1991) Sub-surface soil gas radon changes associated with earthquakes. Int J Radiat Appl Instrum Part D Nucl Tracks Radiat Meas 19(1–4):417–420

    Article  CAS  Google Scholar 

  130. Singh S, Kumar A, Bajwa BS, Mahajan S, Kumar V, Dhar S (2010) Radon monitoring in soil gas and ground water for earthquake prediction studies in North West Himalayas, India. Terrestr Atmos Ocean Sci 21:685–695

    Article  Google Scholar 

  131. Singh OP, Chauhan V, Singh B (2013) GPS based total electron content (TEC) anomalies and their association with large magnitude earthquakes occurred around Indian region. Indian J Radio Space Phys 42:131–135

  132. Straser V, Cataldi G (2015) Solar wind ionic variation associated with earthquakes greater than magnitude 6.0. New Concepts Glob Tectonics J 3(2):140–154

    Google Scholar 

  133. Suárez G, Espinosa-Aranda JM, Cuéllar A, Ibarrola G, García A, Zavala M, Maldonado S, Islas R (2018) A dedicated seismic early warning network: the Mexican seismic alert system (SASMEX). Seismol Res Lett 89(2A):382–391

    Article  Google Scholar 

  134. Sultankhodzhayev AN, Latipov SU, Zakirov TZ, Zigan FG (1980) Dependence of hydrogeoseismological anomalies on the energy and epicentral distance of earthquakes. Dokl Akad Nauk Uzb SSR 5:57–59

    Google Scholar 

  135. Tajima F, Hayashida T (2018) Earthquake early warning: what does “seconds before a strong hit” mean? Prog Earth Planet Sci 5:63–87

    Article  Google Scholar 

  136. Tanner AB (1964) Radon migration in the ground: a review. In: Adams JAS, Lowder WM (Eds) The natural radiation environment symposium proceedings, Houston, Texas, Apr. 10–13, 1963, University of Chicago press, Chicago, USA, pp. 161–190.

  137. Thomas DM (1988) Geochemical precursors to seismic activity. Pure Appl Geophys 126:241–266

    Article  CAS  Google Scholar 

  138. Toulkeridis T, Mato F, Toulkeridis-Estrella K, Pérez Salinas JC, Tapia S, Fuertes W (2018) Real-time radioactive precursor of the april 16, 2016 Mw 7.8 earthquake and tsunami in ecuador. Sci Tsunami Hazards 37(1):34–48

    Google Scholar 

  139. Toutain JP, Baubron JC (1999) Gas geochemistry and seismo-tectonics: a review. Tectonophysics 304:1–27

    Article  CAS  Google Scholar 

  140. Tsabaris C (2021) Changes of gross gamma-ray intensity in a submarine spring system due to a distant earthquake event on 30th of March 2019 at Itea, Greece. J Radioanal Nucl Chem 330:755–763

  141. Tsvetkova T, Nevinsky I, Nevinsky V (2012) Measurements of soil radon in South Russia for seismological application: some results. Radiat Meas 47(4):292–302

    Article  CAS  Google Scholar 

  142. Tsvetkova T, Nevinsky I, Suyatin B, Akkurt I, Kulali F (2016) Application of the nuclear analytical chemistry (NAC) methods in seismological researches of mud volcanoes and springs in the Black Sea zone. J Radioanal Nucl Chem 307:169–178

    Article  CAS  Google Scholar 

  143. Ulomov VI, Mavashev BZ (1971) The tashkent earthquake of 26 April, 1966. Izv Akad Nauk, Uzbek SSR, 188–192.

  144. Vautard R, Yiou P, Ghil M (1992) Singular-spectrum analysis: a toolkit for short, noisy chaotic signals. Phys D 58:95–126

    Article  Google Scholar 

  145. Virk HS, Singh B (1993) Radon anomalies in soil-gas and groundwater as earthquake precursor phenomena. Tectonophysics 227(1–4):215–224

    Article  CAS  Google Scholar 

  146. Virk HS, Walia V, Sharma AK, Kumar N, Kumar R (2000) Correlation of radon anomalies with microseismic events in Kangra and Chamba valleys of N-W Himalayas. Geofísica Int 39(3):221–227

    Article  CAS  Google Scholar 

  147. Wang K, Chen Q-F, Sun S, Wang A (2006) Predicting the 1975 Haicheng Earthquake. Bull Seismol Soc Am 96(3):757–795

    Article  Google Scholar 

  148. Wu SL (1992) Electron density profile at Taiwan. MS Thesis, National Central University, Taiwan, p. 83

  149. Yakovleva VS, Nagorsky PM, Kondratyeva AG, Mishina NV (2016) The influence of meteorological parameters and other factors on soil radon dynamics. IOP Conf Ser Mater Sci Eng 142:012051

    Article  Google Scholar 

  150. Zhao D, Mishra OP, Sanda R (2002) Influence of fluid and magma on earthquakes: seismological evidence. Phys Earth Planet Inter 132:249–267

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge C. Barman, J.Y. Liu, C-C Fu, and S.A. Pulinets for providing many of the figures used in this work. The authors also thank Elsevier (publisher of Quaternary International) for giving permission to use 3 copyrighted figures.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

AGB and SC came up with the idea of the article. All authors participated in literature search and analysis. SC made the final draft. Argha Deb made critical comments on the manuscript.

Corresponding author

Correspondence to Argha Deb.

Ethics declarations

Conflict of interest

The authors declare that no potential conflict of interests exist that could have affected the work.

Ethical approval

The authors adhered to all ethical standards regarding plagiarism.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chowdhury, S., Guha Bose, A., Das, A. et al. A study of some research work on soil radon concentration and ionospheric total electron content as earthquake precursors. J Radioanal Nucl Chem 333, 1633–1659 (2024). https://doi.org/10.1007/s10967-024-09409-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-024-09409-6

Keywords

Navigation