Skip to main content
Log in

New photo-Fenton type catalyst of soda-lime aluminosilicate glass prepared by recycling waste slag–a review

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this review, the structure of iron-containing soda-lime aluminosilicate glass–ceramics prepared by domestic waste slag from waste combustion plants in Japan and its simulated composite was investigated by 57Fe-Mössbauer spectroscopy. The photo-Fenton catalytic ability of the samples was evaluated by a degradation test using an aqueous methylene blue (MB) solution. The photo-Fenton catalytic efficacy of the specimens was assessed through a degradation examination employing an aqueous methylene blue (MB) solution. The MB degradation test recorded a k value of 2.25–2.65 × 10–3 min−1 using the composite of (silicate + iron oxide nanoparticles) prepared from domestic waste slag. The 57Fe-Mössbauer spectra were mainly composed of three sextets due to nanoparticles of Fe3O4 and α-Fe2O3. After exploring the chemical composition of soda lime iron aluminosilicates as domestic waste-modeled slag, we revealed that heat-treated simulated slag samples of 5Na2O-41.4CaO-20Al2O3-27.6SiO2-6Fe2O3 glass showed the largest k value of 115 × 10–3 min−1 under photo-Fenton reaction which highly covalent distorted FeIIIO4 caused. It is concluded that municipal waste slag can be a starting material for the Photo-Fenton catalyst with high activity, which contributes purification of wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this article.

References

  1. OECD (2022), Municipal waste (indicator). doi: https://doi.org/10.1787/89d5679a-en (Accessed on Nov. 21st, 2022).

  2. OECD (2022), Wastewater treatment (indicator). doi:https://doi.org/10.1787/ef27a39d-en (Accessed on Nov. 21st, 2022).

  3. https://www.env.go.jp/press/109290.html (Accessed on Nov. 21st, 2022)

  4. Tokyo Metropolitan Government Environmental White Paper 2021, https://www.kankyo.metro.tokyo.lg.jp/dbook/202203/hakusyo2022//202203_tokyo_hakusho/book.pdf (Accessed on Nov. 21st, 2022).

  5. https://www.kankyo.metro.tokyo.lg.jp/faq/resource/chubou/recycle/answer_06_03.html (Accessed on Nov. 21st, 2022).

  6. Tokyo Sewerage Systems -Sustainable Solutions for Global Challenges-, https://www.gesui.metro.tokyo.lg.jp/english/pdf/Leaflet_English.pdf (Accessed on Nov. 21st, 2022)

  7. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38. https://doi.org/10.1038/238037a0

    Article  CAS  PubMed  Google Scholar 

  8. Apiwong-ngarm K, Pongwan P, Inceesungvorn B, Phanichphant S, Wetchakun K, Wetchakun N (2014) Photocatalytic activities of Fe–Cu/TiO2 on the mineralization of oxalic acid and formic acid under visible light irradiation. Powder Technol 266:447–455. https://doi.org/10.1016/j.powtec.2014.06.061

    Article  CAS  Google Scholar 

  9. Abbrus Z, Balázs N, Alapi T, Wittmann G, Sipos P, Dombi A, Mogyorósi K (2008) Synthesis, structure and photocatalytic properties of Fe(III)-doped TiO2 prepared from TiCl3. Appl Catal B: Environ 81:27–37. https://doi.org/10.1016/j.apcatb.2007.11.041

    Article  CAS  Google Scholar 

  10. Álvarez AR, Martínez SS, Arellano CAP (2023) Influence of copper and iron transition metals in the photocatalytic activity of titanium dioxide microspheres. J Photochem Photobiol A: Chem 444:115016. https://doi.org/10.1016/j.jphotochem.2023.115016

    Article  CAS  Google Scholar 

  11. Katherine TNL, Vendula B, Jaroslav K, Jaroslav C (2023) Structure and photocatalytic properties of Ni-, Co-, Cu-, and Fe-doped TiO2 aerogels. Gels 9:357. https://doi.org/10.3390/gels9050357

    Article  CAS  Google Scholar 

  12. Zhang H, Zhu C, Chen Y, Yang M, Yang P, Wu X, Qi L, Meng F (2014) Enhanced photocatalytic activities of net-like hematite nanoparticle/graphene oxide composite. J Mater Chem A 4:1421–1426. https://doi.org/10.1039/c4ta05171h

    Article  Google Scholar 

  13. Kubuki S, Iwanuma J, Takahashi Y, Akiyama K, Homonnay Z, Sinkó K, Kuzmann E, Nishida T (2014) Visible light activated catalytic effect of iron containing soda-lime silicate glass characterized by 57Fe-Mössbauer spectroscopy. J Radioanal Nucl Chem 301(1):1–7. https://doi.org/10.1007/s10967-014-3109-y

    Article  CAS  Google Scholar 

  14. Ishikawa S, Kobzi B, Sunakawa K, Nemeth S, Lengyel A, Kuzmann E, Homonnay Z, Nishida T, Kubuki S (2017) Visible-light activated photocatalytic effect of glass and glass ceramic prepared by recycling waste slag with hematite. Pure Appl Chem 89(4):535–544. https://doi.org/10.1515/pac-2016-1018

    Article  CAS  Google Scholar 

  15. Iida Y, Akiyama K, Kobzi B, Sinkó K, Homonnay Z, Kuzmann E, Ristić M, Krehula S, Nishida T, Kubuki S (2015) Structural analysis and visible light-activated photocatalytic activity of iron-containing soda lime aluminosilicate glass. J Alloys Compd 645:1–6. https://doi.org/10.1016//j.jallcom.2015.04.153

    Article  CAS  Google Scholar 

  16. Scherrer P (1918) Bestimmung der grosse und der inneren struktur von kolloidteilchen mittels rontgenstrahlen. Gottinger Nachrichten Gesell 2:98–100

    Google Scholar 

  17. Farag MA, Ibrahim A, Hassaan MY, Ramadan RM (2022) Enhancement of structural and optical properties of transparent sodium zinc phosphate glass-ceramics nanocomposite. J Aust Ceram Soc 58:653–661. https://doi.org/10.1007/s41779-022-00716-3

    Article  CAS  Google Scholar 

  18. Ali AS, Ishikawa S, Nomura K, Kuzmann E, Homonnay Z, Scrimshire A, Bingham P, Krehula S, Ristić M, Musić S, Kubuki S (2019) Mössbauer and photocatalytic studies of CaFe2O4 nanoparticles-contaning aluminosilicate prepared from domestic waste simulted slag. J Radioanal Nucl Chem 322(2):1469–1476. https://doi.org/10.1007/s10967-019-06715-2

    Article  CAS  Google Scholar 

  19. Pignatello JJ, Di L, Huston P (1999) Evidence for an additional oxidant in the photoassisted fenton reaction. Environ Sci Technol 33:1832–1839. https://doi.org/10.1021/es980969b

    Article  CAS  Google Scholar 

  20. Ali AS, Nomura K, Homonnay Z, Kuzmann E, Scrimshire A, Bingham P, Krehula S, Ristić M, Musić S, Kubuki S (2019) The relationship between local structure and photo-Fenton catalytic ability of glass and glass-ceramic samples prepared from domestic slag measured by 57Fe Mössbauer spectroscopy. J Radioanal Nucl Chem 322(2):751–761. https://doi.org/10.1007/s10967-019-06726-z

    Article  CAS  Google Scholar 

  21. Huston PL, Pignatello JJ (1999) Degradation of selected pesticide active ingredients and commercial formulations in water by the photo-assisted fenton reaction. Water Res 33(5):1238–1246. https://doi.org/10.1016/S0043-1354(98)00330-3

    Article  CAS  Google Scholar 

  22. Machulek A, Quina F, Gozzi F, Silva V, Friedrich I and Moraes J, Ch. 11 Fundamental Mechanistic Studies of the Photo-Fenton Reaction for the Degradation of Organic Pollutants In: Organic Pollutants Ten Years After the Stockholm Convention-Environmental and Analytical Update, eds. T. Puzyn and A. Mostrag-Szichtyng . Intechopen, Rijeka, Croatia (2012).

  23. Brahmia Q (2016) Photocatalytic degradation of a textile dye under UV and solar light irradiation using TiO2 and ZnO nanoparticles. IJACEBS 3:225–227

    Google Scholar 

  24. Kazemi F, Mohamadnia Z, Kaboudin B, Karimi Z (2016) Photodegradation of methylene blue with a titanium dioxide/polyacrylamide photocatalyst under sunlight. J Appl Polym Sci 133(43386):1–9. https://doi.org/10.1002/app.43386

    Article  CAS  Google Scholar 

  25. Yao J, Wang C (2010) Decolorization of methylene blue with TiO2 sol via UV irradiation photocatalytic degradation. Int J Photoenergy 2010:1–6

    Article  Google Scholar 

  26. Ali AS, Khan I, Zhang B, Razum M, Pavić L, Šantić A, Bingham PA, Nomura K, Kubuki S (2021) Structural, electrical and photocatalytic properties of iron-containing soda-lime aluminosilicate glass and glass-ceramics. J Non-Cryst Solids 553:120510. https://doi.org/10.1016/j.jnoncrysol.2020.120510

    Article  CAS  Google Scholar 

  27. Ibrahim A, Kubo K, Watanabe S, Shiba S, Khan I, Zhang B, Homonnay Z, Kuzmann E, Pavić L, Santić A, Ali AS, Hassaan MY, Kubuki S (2023) Enhancement of electrical conductivity and thermal stability of iron- or tin- substituted vanadate glass and glass-ceramics nanocomposite to be applied as a high-performance cathode active material in sodium-ion batteries. J Alloys Compound 930:167366. https://doi.org/10.1016/j.jallcom.2022.167366

    Article  CAS  Google Scholar 

  28. Ibrahim A, Arita Y, Ali AS, Khan I, Zhang B, Razum M, Pavić L, Santić A, Homonnay Z, Kuzmann E, Hassaan MY, Wang J, Kubuki S (2023) impact of adding Fe ions on the local structure and electrochemical performance of P2O5-V2O5 glass and glass ceramics used as cathode in LIBs. J Phys Chem Solids 179:111391. https://doi.org/10.1016/j.jpcs.2023.111391

    Article  CAS  Google Scholar 

  29. Khan I, Saito H, Ali AS, Zhang B, Kubuki S (2021) Structural characterization and visible-light activated photocatalytic ability of glass–ceramics prepared from municipal solid waste. J Mater Cycles Waste Manag 23(6):2266–2277. https://doi.org/10.1007/s10163-021-01293-6

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors (A.I.) expresses his gratitude for the financial support by Grant-in-Aid for Scientific Research Hoga (KAKENHI, No. 26630321) and Tokyo Metropolitan Government Advanced Research Grant No. H29-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ibrahim.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, A., Ali, A.S., Khan, I. et al. New photo-Fenton type catalyst of soda-lime aluminosilicate glass prepared by recycling waste slag–a review. J Radioanal Nucl Chem 332, 3859–3878 (2023). https://doi.org/10.1007/s10967-023-09127-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-09127-5

Keywords

Navigation