Skip to main content
Log in

Utilizing the k0-IAEA program to determine rare earth elements in soil samples from gold-mining areas in Sudan

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

This study investigates the concentrations and accumulation levels of rare earth elements (REEs) in soil samples collected from gold-mining sites in Sudan in order to study the distribution of REEs and discuss their concentrations around the gold mining areas in Sudan. The presence of REEs was determined through the neutron activation analysis technique. Irradiations have been carried out using the pneumatic tube system (PTS) and rotary specimen rack (RSR) facilities of the Moroccan TRIGA Mark II research reactor. Measurements were made using a well-calibrated HP-Ge detector for energy and efficiency, while SRM–NIST 2586 was used as a reference material to ensure the quality of the obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Diatloff E, Asher CJ, Smith FW (1996) Concentrations of rare earth elements in some Australian soils. J Soil Res 34:735–747

    Article  CAS  Google Scholar 

  2. Hu Z, Haneklaus S, Sparovek G, Schnug E (2006) Rare earth elements in soils. Commun Soil Sci Plant Anal 37(9):1381–1420

    Article  CAS  Google Scholar 

  3. Zhou HY, Greig A, Tang J, You CF, Yuan DX, Tong XN, Huang Y (2012) Rare earth elements pattern in a Chinese stalagmite controlled by sources and scavenging from karst ground water. Geochim Cosmochim Acta 83:1–18

    Article  CAS  Google Scholar 

  4. Laveuf C, Cornu S, Juillot F (2008) Rare earth elements as tracers of pedogenetic processes. CR GeoSci 340:523–532

    Article  CAS  Google Scholar 

  5. El-Taher A (2007) Rare-earth elements in Egyptian granite by instrumental neutron activation analysis. Radiat Isot 65:458–464

    Article  CAS  Google Scholar 

  6. Temga JP, Sababa E, Mamdem LE, Bijeck ML, Azinwi PT, Tehna N, Zame P, Onana VL, Nguetnkam JP, Bitom LD, Ndjigui P (2021) Rare earth elements in tropical soils, Cameroon soils (Central Africa). Geoderma Reg. https://doi.org/10.1016/j.geodrs.2021.e00369

    Article  Google Scholar 

  7. Aide M (2019) Lanthanide soil chemistry and its importance in understanding soil pathways: mobility, plant uptake, and soil health. Lanthanides. https://doi.org/10.5772/intechopen.79238

    Article  Google Scholar 

  8. Tyler G (2004) Rare earth elements in soil and plant systems: a review. Plant Soil 267:191–206

    Article  CAS  Google Scholar 

  9. Alfaro MR, Nascimento CWA, Biondi CM, Silva YJ, Silva YB, Accioly A, Montero A, Ugarte OM, Estevez J (2017) Rare-earth-element geochemistry in soils developed in different geological settings of Cuba. CATENA. https://doi.org/10.1016/j.catena.2017.10.031

    Article  Google Scholar 

  10. Lavi N, Lipshi G, Neeman E, Itamar A, Baer G (1988) Determination of trace amounts of gold in the presence of rare earth elements in rock samples from Makhtesh Ramon (Southern Israel), by instrumental epithermal neutron activation analysis. J Radioanal Nucl Chem 120(1):105–112

    Article  CAS  Google Scholar 

  11. Binnemans K, Jones PT, Blanpain B, Gerven TV, Yang Y, Walton A, Buchert M (2013) Recycling of rare earths: a critical review. J Clean Prod 51:1–22

    Article  CAS  Google Scholar 

  12. Bounouira H, Embarcha K, Amsil H, Bounakhla M, Foudeil S, Ait Lyazidi S, Benyaich F, Haddad M, Said F (2018) Study of heavy metal assessment in the Gharb plain along Sebou river (Morocco) using k0-NAA method at the Moroccan Triga Mark II research Reactor. Ann Agrar Sci 16:376–388

    Article  Google Scholar 

  13. Rim KT, Koo KH, Park JS (2013) Toxicological evaluations of rare earths and their health impacts to workers: a literature review. Saf Health Work 4:12–26. https://doi.org/10.5491/SHAW.2013.4.1.12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zapp P, Schreiber A, Marx J, Kuckshinrichs W (2022) Environmental impacts of rare earth production. MRS Bull. https://doi.org/10.1557/s43577-022-00286-6

    Article  PubMed  PubMed Central  Google Scholar 

  15. Azbouche A, Moulla AS, Belgaid M (2020) Rare-earth elements distribution in Algerian soil samples using neutron activation analysis: Monte Carlo analytical method approach. Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2020.1759569

    Article  Google Scholar 

  16. Bounouira H, Choukri A, Cherkaoui R, Chakiri S, Bounakhla M, Embarch K (2012) Utilization of instrumental neutron activation analysis (INAA) for geochemical behaviour study of major and trace elements in Bouregreg river basin (Morocco). J Radioanal Nucl Chem 292(3):1049–1058

    Article  CAS  Google Scholar 

  17. Yoshida S, Maramutsu Y, Tagami K, Uchida S (1998) Concentrations of lanthanide elements, Th, and U in 77 Japanese surface soils. Environ Int 24:275–286

    Article  CAS  Google Scholar 

  18. Sadeghi M, Morris GA, Carranza EJM, Ladenberger A, Andersson M (2013) Rare earth element distribution and mineralization in Sweden: an application of principal component analysis to foregs soil geochemistry. J Geochem Explor 133:160–175

    Article  CAS  Google Scholar 

  19. Orvini E, Speziali M, Salvini A, Herborg C (2000) Rare earth elements determination in environmental matrices by INAA. Microchem 67:97–104

    Article  CAS  Google Scholar 

  20. Tyler G, Olsson T (2002) Conditions related to solubility of rare and minor elements in forest soils. J Plant Nutr Soil Sci 165:594–601

    Article  CAS  Google Scholar 

  21. Ismail I, Baioumy H, Ouyang H, Mossa H, Fouad Aly H (2015) Origin of fluorite mineralizations in the Nuba Mountains, Sudan and their rare earth element geochemistry. J Afr Earth Sci 112:276–286

    Article  CAS  Google Scholar 

  22. Kaniu MI, Angeyo KH, Mangala MJ, Mwala AK, Bartilol SK (2011) Feasibility for chemometric energy dispersive X-ray fluorescence and scattering (EDXRFS) spectroscopy method for rapid soil quality assessment. X Ray Spectrom 40:432–440

    Article  CAS  Google Scholar 

  23. Huang H, Lin C, Yu R, Yan Y, Hu G, Wang Q (2018) Spatial distribution and source appointment of rare earth elements in paddy soils of Jiulong River Basin, Southeast China. J Geochem Explor. https://doi.org/10.1016/j.gexplo.2018.09.008

    Article  Google Scholar 

  24. Kayasth S, Swain K (2004) Determination of rare-earth elements in Periyar River water (Kerala, India) and seawater (Mumbai, India) using neutron activation analysis. Radioanal Nucl Chem 262(1):191–194

    Article  CAS  Google Scholar 

  25. Ohde S, Mataragio JP (1999) Instrumental neutron activation analysis of carbonatites from Panda Hill and Oldinyo-Lengai, Tanzania. J Radioanal Nucl Chem 240:325–328

    Article  CAS  Google Scholar 

  26. Ohde S (2003) Determination of rare earth elements in carbonatites from the Kangankunde Mine, Malawi by instrumental neutron activation analysis. J Radioanal Nucl Chem 257(2):433–435

    Article  CAS  Google Scholar 

  27. https://ejatlas.org/conflict/gold-mining-Sudan

  28. http://en.wikipedia.org/wiki/Geology-of-Sudan

  29. Rossbach M, Blaauw M, Bacchi MA, Lin X (2007) The k0-IAEA program. J Radioanal Nucl Chem 274(3):657–662

    Article  CAS  Google Scholar 

  30. Blaauw M, De Corte F (2010) Consistency of nuclear data in the fundamental databases for use in the k0 method. Nucl Instrum Methods Phys Res 622:377–380

    Article  CAS  Google Scholar 

  31. Oliveira SMB, Larizzatti FE, Favaro DIT, Moreira SRD, Mazzilli BP, Piovano EL (2003) Rare earth element patterns in lake sediments as studied by neutron activation analysis. J Radioanal Nucl Chem 258(3):531–535

    Article  CAS  Google Scholar 

  32. Marie KS, Jan K (2011) Comparison of Kayzero for Windows and k0-IAEA software packages for k0 standardization in neutron activation analysis. Nucl Instrum Methods Phys Res 654:206–212

    Article  Google Scholar 

  33. Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell, Oxford

    Google Scholar 

  34. Loell M, Reiher W, Felix-Henningsen P (2011) Contents and bioavailability of rare earth elements in agricultural soils in Hesse (Germany). J Plant Nut Soil Sci 174:644–654

    Article  CAS  Google Scholar 

  35. Fiket Z, Mikac N, Kniewald G (2017) Influence of the geological setting on the REE geochemistry of estuarine sediments: a case study of the Zrmanja River estuary (Eastern Adriatic coast). J Geochem Explor. https://doi.org/10.1016/j.gexplo.2017.09.001

    Article  Google Scholar 

  36. Benesty J, Chen J, Huang Y, Cohen I (2009) Pearson correlation coefficient. Springer, Berlin

    Book  Google Scholar 

  37. Henderson P (1984) Rare earth element geochemistry: developments in geochemistry. Elsevier, Amsterdam

    Google Scholar 

  38. Benarabi A, Nili MS, Douadi A (2021) Study of some indicators of Environmental Pollution of Surface Soil for the City of Touggourt (Southeast Algeria). Nat Environ Pollut Technol 20(2):1863–1871

    CAS  Google Scholar 

  39. Bern CR, Walton-Day K, David L, Naftz DL (2019) Improved enrichment factor calculations through principal component analysis: examples from soils near breccia pipe uranium mines, Arizona, USA. Environ Pollut 248:90–100

    Article  CAS  PubMed  Google Scholar 

  40. Barbieri M, Nigro A, Sappa G (2015) Soil contamination evaluation by enrichment factor (EF) and geoaccumulation index (Igeo). Senses Sci 3:94–97. https://doi.org/10.14616/sands-2015-3-9497

    Article  Google Scholar 

  41. Jimoh A, Agbaji EB, Ajibola VO, Funtua MA (2020) Application of pollution load indices, enrichment factors, contamination factor and health risk assessment of heavy metals pollution of soils of welding workshops at old Panteka market, Kaduna-Nigeria. Open J Anal Bioanal Chem 4(1):11–19

    Google Scholar 

  42. Mejjad N, Laissaoui A, Benmhammed A, Fekri A, El Hammoumi O, Benkdad A, Amsil H, Chakir E (2022) Potential ecological risk assessment of rare earth elements in sediments cores from the Oualidia lagoon, Morocco. Soil Sediment Contam. https://doi.org/10.1080/15320383.2022.2027342

    Article  Google Scholar 

  43. Esshaimi M, Ouazzani N, Avila M, Perez G, Valiente M, Mandi L (2012) Heavy metal contamination of soils and water resources Kettara abandoned mine. Am J Environ Sci 8(3):253–261

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the International Atomic Energy Agency for financially supporting this work through the PhD Sandwich Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Bounouira.

Ethics declarations

Conflict of interest

The authors have no potential conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, M.E., Bounouira, H., Abbo, M.A. et al. Utilizing the k0-IAEA program to determine rare earth elements in soil samples from gold-mining areas in Sudan. J Radioanal Nucl Chem 332, 1707–1721 (2023). https://doi.org/10.1007/s10967-023-08886-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-08886-5

Keywords

Navigation