Skip to main content
Log in

Graphene oxide enhanced the reductive sequestration of UO22+, ReO4, SeO42− and SeO32− by zero-valent iron: batch, column and mechanism investigations

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

This paper revealed the enhancement role of graphene oxide (GO) in reductive sequestration of UO22+, ReO4, SeO42− and SeO32− on zero-valent iron (ZVI) using batch, column and X-ray spectroscopic experiments. First, we decorated nanoscale zero-valent iron (NZVI) on GO to obtain NZVI-GO, and the kinetics for adsorption of these radionuclides on NZVI-GO could be well described by the pseudo-second-order model, indicating a chemical interaction process. The isotherms for UO22+ adsorption on NZVI-GO could be fitted better by Freundlich model than that by Langmuir model. Besides, the presence of co-existing dissolved humic acid could significantly promoted the adsorption. In column experiments, the combination of GO to pack with ZVI and sand as reactive medium for removal of these radionuclides prolong the reaction longevity of the column packed with ZVI and sand as reactive medium. It might be the first report from XPS that the GO decoration facilitated NZVI reduced Re(VII), Se(VI) and Se(IV) into Re0 and Se(-II) with lower oxidation state, which could be not observed in bare NZVI system. So, due to the excellent electron mediation ability and adsorption capacity, GO demonstrated an important role in enhancing reductive sequestration of redox-sensitive radionuclides in a wide range of natural environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chen L, Liu J, Zhang W, Zhou J, Luo D, Li Z (2021) Uranium (U) source, speciation, uptake, toxicity and bioremediation strategies in soil-plant system: a review. J Hazard Mater 413:125319

    Article  CAS  Google Scholar 

  2. Chen T, Liu B, Li M, Zhou L, Lin D, Ding X, Lian J, Li J, He R, Duan T, Zhu W (2021) Efficient uranium reduction of bacterial cellulose-MoS2 heterojunction via the synergistically effect of Schottky junction and S-vacancies engineering. Chem Eng J 406:126791

    Article  CAS  Google Scholar 

  3. Cai H, Bao H, Zhang X, Lei L, Xiao C (2021) Highly efficient sorption of selenate and selenite onto a cationic layered single hydroxide via anion exchange and inner-sphere complexation. Chem Eng J 420:129726

    Article  CAS  Google Scholar 

  4. Tang C, Zhang Y, Han J, Tian Z, Chen L, Chen J (2020) Monitoring graphene oxide’s efficiency for removing Re(VII) and Cr(VI) with fluorescent silica hydrogels. Environ Pollut 262:114246

    Article  CAS  Google Scholar 

  5. Duan J, Ji H, Zhao X, Tian S, Liu X, Liu W, Zhao D (2020) Immobilization of U(VI) by stabilized iron sulfide nanoparticles: water chemistry effects, mechanisms, and long-term stability. Chem Eng J 393:124692

    Article  CAS  Google Scholar 

  6. Xiong J, Wang H, Yao J, He Q, Ma J, Yang J, Liu C, Chen Y, Huangfu X, Liu H (2022) A critical review on sulfur reduction of aqueous selenite: mechanisms and applications. J Hazard Mater 422:126852

    Article  CAS  Google Scholar 

  7. Huang M, Lou Z, Zhao W, Lu A, Hao X, Wang Y, Feng X, Shan W, Xiong Y (2022) Immersion grinding and in-situ polymerization synthesis of poly(ionic liquid)s incorporation into MOF composites as radioactive TcO4- scavenger. J Hazard Mater 422:126871

    Article  CAS  Google Scholar 

  8. Deng H, Wang X, Wang L, Li Z, Liang P, Ou J, Liu K, Yuan L, Jiang Z, Zheng L, Chai Z, Shi W (2020) Enhanced photocatalytic reduction of aqueous Re(VII) in ambient air by amorphous TiO2/g-C3N4 photocatalysts: implications for Tc(VII) elimination. Chem Eng J 401:125977

    Article  CAS  Google Scholar 

  9. Coyte R, Vengosh A (2020) Factors controlling the risks of co-occurrence of the redox-sensitive elements of arsenic, chromium, vanadium, and uranium in groundwater from the eastern United States. Environ Sci Technol 54:4367–4375

    Article  CAS  Google Scholar 

  10. Lia J, Wu Z, Duan Q, Li X, Li Y, Alsulami H, Alhodaly M, Hayat T, Sun Y (2020) Simultaneous removal of U(VI) and Re(VII) by highly efficient functionalized ZIF-8 nanosheets adsorbent. J Hazard Mater 393:122398

    Article  Google Scholar 

  11. Zhu T, Tian L, Yu H (2020) Phosphate-suppressed selenite biotransformation by escherichia coli. Environ Sci Technol 54:10713–10721

    Article  CAS  Google Scholar 

  12. Roebbert Y, Rosendahl C, Brown A, Schippers A, Bernier-Latmani R, Weyer S (2021) Uranium isotope fractionation during the anoxic mobilization of noncrystalline U(IV) by ligand complexation. Environ Sci Technol 55:7959–7969

    Article  CAS  Google Scholar 

  13. Zhou L, Li Z, Yi Y, Tsang E, Fang Z (2022) Increasing the electron selectivity of nanoscale zero-valent iron in environmental remediation: a review. J Hazard Mater 421:126709

    Article  CAS  Google Scholar 

  14. Wu J, Zhao J, Li H, Miao L, Hou J, Xing B (2021) Simultaneous removal of selenite and selenate by nanosized zerovalent iron in anoxic systems: the overlooked role of selenite. Environ Sci Technol 55:6299–6308

    Article  CAS  Google Scholar 

  15. Suazo-Hernández J, Manquián-Cerda K, Mora M, Molina-Roco M, Rubio M, Sarkar B, Bolan N, Arancibia-Miranda N (2021) Efficient and selective removal of SeVI and AsV mixed contaminants from aqueous media by montmorillonite-nanoscale zero valent iron nanocomposite. J Hazard Mater 403:123639

    Article  Google Scholar 

  16. Ruan Y, Zhang H, Yu Z, Diao Z, Song G, Su M, Hou L, Chen D, Wang S, Kong L (2022) Phosphate enhanced uranium stable immobilization on biochar supported nano zero valent iron. J Hazard Mater 424:127119

    Article  CAS  Google Scholar 

  17. Wei X, Li X, Tang L, Yu J, Deng J, Luo T, Liang J, Chen X, Zhou Y (2021) Exploring the role of Fe species from biochar-iron composites in the removal and long-term immobilization of SeO42 against competing oxyanions. J Hazard Mater 418:126311

    Article  CAS  Google Scholar 

  18. Wang S, Wang L, Li Z, Zhang P, Du K, Yuan L, Ning S, Wei Y, Shi W (2021) Highly efficient adsorption and immobilization of U(VI) from aqueous solution by alkalized MXene-supported nanoscale zero-valent iron. J Hazard Mater 408:124949

    Article  CAS  Google Scholar 

  19. Garci A, Zhang Y, Ghoshal S, He F, O’Carroll D (2021) Recent advances in sulfidated zerovalent iron for contaminant transformation. Environ Sci Technol 55:8464–8483

    Article  Google Scholar 

  20. Li D, Zhong Y, Zhu X, Wang H, Yang W, Deng Y, Huang W, Peng P (2021) Reductive degradation of chlorinated organophosphate esters by nanoscale zerovalent iron/cetyltrimethylammonium bromide composites: reactivity, mechanism and new pathways. Water Res 188:116447

    Article  CAS  Google Scholar 

  21. Yang D, Yang S, Wang L, Xu J, Liu X (2021) Performance of biochar-supported nanoscale zero-valent iron for cadmium and arsenic co-contaminated soil remediation: Insights on availability, bioaccumulation and health risk. Environ Pollut 290:118054

    Article  CAS  Google Scholar 

  22. Wang Z, Liu X, Ni S, Zhuang X, Lee T (2021) Nano zero-valent iron improves anammox activity by promoting the activity of quorum sensing system. Water Res 202:117491

    Article  CAS  Google Scholar 

  23. Li L, Wu H, Chen J, Xu L, Sheng G, Fang P, Du K, Shen C, Guo X (2021) Anchoring nanoscale iron sulfide onto graphene oxide for the highly efficient immobilization of uranium (VI) from aqueous solutions. J Mol Liq 332:115910

    Article  CAS  Google Scholar 

  24. Wu H, Li L, Chang K, Du K, Shen C, Zhou S, Sheng G, Linghu W, Hayat T, Guo X (2020) Graphene oxide decorated nanoscale iron sulfide for highly efficient scavenging of hexavalent chromium from aqueous solutions. J Environ Chem Eng 8:103882

    Article  CAS  Google Scholar 

  25. Li X, Ai L, Jiang J (2016) Nanoscale zerovalent iron decorated on graphene nanosheets for Cr(VI) removal from aqueous solution: surface corrosion retard induced the enhanced performance. Chem Eng J 288:789–797

    Article  CAS  Google Scholar 

  26. Xing M, Xu L, Wang J (2016) Mechanism of Co(II) adsorption by zero valent iron/graphene nanocomposite. J Hazard Mater 301:286–296

    Article  CAS  Google Scholar 

  27. Wang C, Luo H, Zhang Z, Wu Y, Zhang J, Chen S (2014) Removal of As(III) and As(V) from aqueous solutions using nanoscale zero valent iron-reduced graphite oxide modified composites. J Hazard Mater 268:124–131

    Article  CAS  Google Scholar 

  28. Mandal S, Pu S, He L, Ma H, Hou D (2020) Biochar induced modification of graphene oxide & nZVI and its impact on immobilization of toxic copper in soil. Environ Pollut 259:113851

    Article  CAS  Google Scholar 

  29. Lv X, Xue X, Jiang G, Wu D, Sheng T, Zhou H, Xu X (2014) Nanoscale zero-valent iron (nZVI) assembled on magnetic Fe3O4/graphene for chromium (VI) removal from aqueous solution. J Colloid Interface Sci 417:51–59

    Article  CAS  Google Scholar 

  30. Chen J, Wu H, Sheng G, Li H, Li M, Guo X, Dong H (2022) Graphene oxide-mediated the reduction of U(VI), Re(VII), Se(VI) and Se(IV) by Fe(II) in aqueous solutions investigated via combined batch, DFT calculation and spectroscopic approaches. Chem Eng J. https://doi.org/10.1016/j.cej.2021.133844

    Article  Google Scholar 

  31. Sheng G, Tang Y, Linghu W, Wang L, Li J, Li H, Wang X, Huang Y (2016) Enhanced immobilization of ReO4 by nanoscale zerovalent iron supported on layered double hydroxide via an advanced XAFS approach: implications for TcO4 sequestration. Appl Catal B: Environ 192:268–276

    Article  CAS  Google Scholar 

  32. Zhang Y, Li Y, Li J, Sheng G, Zhang Y, Zheng X (2012) Enhanced Cr(VI) removal by using the mixture of pillared bentonite and zero-valent iron. Chem Eng J 185–186:243–249

    Article  Google Scholar 

  33. Tan L, Zhao C, Tan X, Wang X, Feng J, Fang M, Ai Y, Hayat T, Sun L, Wang X (2019) Effect of co-existing Co2+ ions on the aggregation of humic acid in aquatic environment: aggregation kinetics, dynamic properties and fluorescence spectroscopic study. Sci Total Environ 674:544–553

    Article  CAS  Google Scholar 

  34. Lee B, Seo Y, Hur J (2015) Investigation of adsorptive fractionation of humic acid on graphene oxide using fluorescence EEM-PARAFAC. Water Res 73:242–251

    Article  CAS  Google Scholar 

  35. Zhang Q, Xi B, Yang J, Li S, Li X, Zhao X (2021) Structural characteristics of fulvic acid composted with different materials. China Environ Sci 41(02):76–770

    Google Scholar 

  36. Ding N, Lu XQ, Wu CML (2012) Nitrated tyrosine adsorption on metal-doped graphene: a DFT study. Comput Mater Sci 51:141–145

    Article  CAS  Google Scholar 

  37. Boguta P, D’Orazio V, Senesi N, Sokołowska Z, Szewczuk-Karpisz K (2019) Insight into the interaction mechanism of iron ions with soil humic acids. The effect of the pH and chemical properties of humic acids. J Environ Manage 245:367–374

    Article  CAS  Google Scholar 

  38. Tan L, Tan X, Ren X, Mei H, Wang X (2018) Influence of pH, soil humic acid, ionic strength and temperature on sorption of U(VI) onto attapulgite. J Radioanal Nucl Chem 316:981–991

    Article  CAS  Google Scholar 

  39. Plaschke M, Romer J, Klenze R, Kim J (1999) In situ AFM study of sorbed humic acid colloids at different pH. Colloids Surf A 160:269–279

    Article  CAS  Google Scholar 

  40. Yang S, Li L, Pei Z, Li C, Shan X-Q, Wen B, Zhang S, Zheng L, Zhang J, Xie Y, Huang R (2014) Effects of humic acid on copper adsorption onto few-layer reduced graphene oxide and few-layer graphene oxide. Carbon 75:227–235

    Article  CAS  Google Scholar 

  41. Pei Z, Li L, Sun L, Zhang S, Shao X, Yang S, Wen B (2013) Adsorption characteristics of 1,2,4-trichlorobenzene, 2,4,6-trichlorophenol, 2-naphthol and naphthalene on graphene and graphene oxide. Carbon 51:156–163

    Article  CAS  Google Scholar 

  42. Wang X, Huang S, Zhu L, Tian X, Li S, Tang H (2014) Correlation between the adsorption ability and reduction degree of graphene oxide and tuning of adsorption of phenolic compounds. Carbon 69:101–112

    Article  CAS  Google Scholar 

  43. Li S, Hu Y, Shen Z, Cai Y, Ji Z, Tan X, Liu Z, Zhao G, Hu S, Wang X (2021) Rapid and selective uranium extraction from aqueous solution under visible light in the absence of solid photocatalyst. Sci China Chem 64(8):1323–1331

    Article  CAS  Google Scholar 

  44. Zheng H, Xie L, Gao C, Sun X, Yang Y, Tang X (2009) Study on the hydrolysis distribution of ferric saline by infrared spectrophotometry and single crystal X-ray diffraction method. Spectrosc Spectral Anal 29(2):540–543 (in Chinese)

    CAS  Google Scholar 

  45. Shi L, Zhang X, Chen Z (2011) Removal of chromium (VI) from wastewater using bentonite-supported nanoscale zero-valent iron. Water Res 45:886–892

    Article  CAS  Google Scholar 

  46. Lv X, Xu J, Jiang G, Xu X (2011) Removal of chromium(VI) from wastewater by nanoscale zero-valent iron particles supported on multiwalled carbon nanotubes. Chemosphere 85:1204–1209

    Article  CAS  Google Scholar 

  47. Bhowmick S, Chakraborty S, Mondal P, Renterghem W, Berghe S, Roman-Ross G, Chatterjee D, Iglesias M (2014) Montmorillonite-supported nanoscale zero-valent iron for removal of arsenic from aqueous solution: kinetics and mechanism. Chem Eng J 243:14–23

    Article  CAS  Google Scholar 

  48. Li Z, Wang L, Meng J, Liu X, Xu J, Wang F, Brookes P (2018) Zeolite-supported nanoscale zero-valent iron: new findings on simultaneous adsorption of Cd(II), Pb(II), and As(III) in aqueous solution and soil. J Hazard Mater 344:1–11

    Article  CAS  Google Scholar 

  49. Lim W, Chong K (2020) Study on modified hummers method for partially oxidized graphene oxide synthesis. Mater Sci Forum 981:23–28

    Article  Google Scholar 

  50. Wang J, Wang Y, He D, Liu Z, Wu H, Wang H, Zhao Y, Zhang H, Yang B, Xu H, Fu M (2012) Direct synthesis of hydrophobic graphene-based nanosheets via chemical modification of exfoliated graphene oxide. J Nanosci Nanotechnol 12:6460–6466

    Article  CAS  Google Scholar 

  51. Gu Z, Deng B, Yang J (2007) Synthesis and evaluation of iron-containing ordered mesoporous carbon (FeOMC) for arsenic adsorption. Microporous Mesoporous Mater 102:265–273

    Article  CAS  Google Scholar 

  52. Ho Y (2006) Review of second-order models for adsorption systems. J Hazard Mater 136:681–689

    Article  CAS  Google Scholar 

  53. Grosvenor AP, Kobe BA, Biesinger MC, McIntyre NS (2004) Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf Interface Anal 36:1564–1574

    Article  CAS  Google Scholar 

  54. Liu A, Liu J, Pan B, Zhang W (2014) Formation of lepidocrocite (g-FeOOH) from oxidation of nanoscale zero-valent iron (nZVI) in oxygenated water. RSC Adv 4:57377

    Article  CAS  Google Scholar 

  55. Chubar N (2018) The influence of sulfate on selenate sorption on Mg–Al–CO3 layered double hydroxides prepared by fine inorganic sol-gel synthesis studied by x-ray photoelectron spectroscopy. Appl Surf Sci 459:281–291

    Article  CAS  Google Scholar 

  56. Gujar T, Shinde V, Park J, Lee H, Jung K, Joo O (2008) Electrodeposition of photoactive 1D gallium selenide quantum dots. Electrochim Acta 54:829–834

    Article  CAS  Google Scholar 

  57. Fu F, Lu J, Cheng Z, Tang B (2016) Removal of selenite by zero-valent iron combined with ultrasound: Se(IV) concentration changes, Se(VI) generation, and reaction mechanism. Ultrason Sonochem 29:328–336

    Article  CAS  Google Scholar 

  58. Tang H, Huang H, Wang X, Wu K, Tang G, Li C (2016) Hydrothermal synthesis of 3D hierarchical flower-like. Appl Surf Sci 379:296–303

    Article  CAS  Google Scholar 

  59. Oktay S, Kahraman Z, Urgen M, Kazmanli K (2015) XPS investigations of tribolayers formed on TiN and (Ti, Re)N coatings. Appl Surf Sci 328:255–261

    Article  CAS  Google Scholar 

  60. Schreier M, Luo J, Gao P, Moehl T, Mayer M, Grätzel M (2016) Covalent Immobilization of a molecular catalyst on Cu2O photocathodes for CO2 reduction. J Am Chem Soc 138(6):1938–1946

    Article  CAS  Google Scholar 

  61. Silva V, Andrade P, Silva M, Dominguez A, Valladares L, Aguiar J (2013) Synthesis and characterization of Fe3O4 nanoparticles coated with fucan polysaccharides. J Magn Magn Mater 343:138–143

    Article  CAS  Google Scholar 

  62. Petala E, Dimos K, Douvalis A, Bakas T, Tucek J, Zboril R, Karakassides M (2013) Nanoscale zero-valent iron supported on mesoporous silica: characterization and reactivity for Cr(VI) removal from aqueous solution. J Hazard Mater 261:295–306

    Article  CAS  Google Scholar 

  63. Dyar M, Agresti D, Schaefer M, Grant C, Sklute E (2006) Mossbauer spectroscopy of earth and planetary materials. Annu Rev Earth Planet Sci 34:83–125

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (21777102). We also sincerely thank the young and middle-aged academic cadres from Shaoxing University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guodong Sheng.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 353 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Cheng, X. & Sheng, G. Graphene oxide enhanced the reductive sequestration of UO22+, ReO4, SeO42− and SeO32− by zero-valent iron: batch, column and mechanism investigations. J Radioanal Nucl Chem 332, 311–323 (2023). https://doi.org/10.1007/s10967-022-08725-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08725-z

Keywords

Navigation