Skip to main content
Log in

The influence of weathering degree on radon exhalation in granite

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The influence of weathering degree on radon exhalation was studied by measuring the radon exhalation rate of Jinxi town, Hunan Province, China, by the electrostatic collection method. The radon exhalation rate results for the four samples are 7.74 Bq m−2 h−1, 8.62 Bq m−2 h−1, 2.59 Bq m−2 h−1, and 4.16 Bq m−2 h−1, respectively. A positive linear correlation is observed between the radon exhalation rate and rock weathering indices CIA (chemical alteration index), CIW (chemical weathering index), PIA (plagioclase alteration index), and V (Wiggett residual coefficient). The correlation coefficient r is 0.932 for CIA, 0.963 for CIW, 0.938 for PIA, and 0.992 for V. The influence of weathering on the radon exhalation rate of granite is greater than that of uranium content and radium activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhang Z, Zhu MN, Zhang YX (2010) Radon protection technology in underground engineering and human settlements. China At Energy Press Aep, Beijing

    Google Scholar 

  2. Nero AV, Nazaroff WW (1984) Characterising the source of radon indoors. Radiat Prot Dosim 7(1–4):23–39. https://doi.org/10.1093/oxfordjournals.rpd.a082958

    Article  CAS  Google Scholar 

  3. Wang J (2019) Progress of geological disposal of high-level radioactive waste in China in the 21st century. At Energy Sci Technol 53(10):2072–2082

    CAS  Google Scholar 

  4. Prasad G, Ishikawa T, Hosoda M, Sahoo SK, Kavasi N, Sorimachi A, Tokonami S, Uchida S (2012) Measurement of radon/thoron exhalation rates and gamma-ray dose rate in granite areas in Japan. Radiat Prot Dosim 152(1–3):130–134. https://doi.org/10.1093/rpd/ncs206

    Article  CAS  Google Scholar 

  5. Bezuidenhout J (2019) Estimation of radon potential through measurement of uranium concentrations in granite geology. S Afr J Sci. https://doi.org/10.17159/sajs.2019/5768

    Article  Google Scholar 

  6. Tang L, Zhu L, Hu SY, Liu QC (1999) Discussion on research methods of radon geological potential law. Rock Miner Anal 4(01):3–8

    Google Scholar 

  7. Kemski J, Siehl A, Stegemann R, Valdivia-Manchego M (2001) Mapping the geogenic radon potential in Germany. Sci Total Environ 272(1–3):217–230. https://doi.org/10.1016/S0048-9697(01)00696-9

    Article  CAS  PubMed  Google Scholar 

  8. Stoulos S, Manolopoulou M, Papastefanou C (2003) Assessment of natural radiation exposure and radon exhalation from building materials in Greece. J Environ Radioact 69(3):225–240. https://doi.org/10.1016/S0265-931X(03)00081-X

    Article  CAS  PubMed  Google Scholar 

  9. Ielsch G, Thieblemont D, Labed V, Richon P, Tymen G, Ferry C, Bechennec F (2001) Radon (222Rn) level variations on a regional scale: influence of the basement trace element (U, Th) geochemistry on radon exhalation rates. J Environ Radioact 53(1):75–90. https://doi.org/10.1016/S0265-931X(00)00106-5

    Article  CAS  PubMed  Google Scholar 

  10. Mao WJ (2013) Concentrations of radon measurement methods. Sci Technol Vision (17): 93+99

  11. Abo-Elmagd M (2014) Radon exhalation rates corrected for leakage and back diffusion–Evaluation of radon chambers and radon sources with application to ceramic tile. J Radiat Res Appl Sci 7(4):390–398. https://doi.org/10.1016/j.jrras.2014.07.001

    Article  Google Scholar 

  12. Girault F, Schubnel A, Pili É (2017) Transient radon signals driven by fluid pressure pulse, micro-crack closure, and failure during granite deformation experiments. Earth Planet Sci Lett 474:409–418. https://doi.org/10.1016/j.epsl.2017.07.013

    Article  CAS  Google Scholar 

  13. Yan J, Ge L, Zou G, Zhao J, Gu Y, Xu L, Jia X (2013) Explore the precipitation amount of radon in granite under uniaxial pressure. Nucl Tech 36(5):1–4

    Google Scholar 

  14. Wei J, Cui P, Chen Z, Yao B, Zheng C, Jia B, Wang X (2018) Experimental study on radon exhalation characteristics of coal samples under varying gas pressures. Results Phys 10:1006–1014. https://doi.org/10.1016/j.rinp.2018.08.019

    Article  Google Scholar 

  15. Sakoda A, Ishimori Y, Yamaoka K (2011) A comprehensive review of radon emanation measurements for mineral, rock, soil, mill tailing and fly ash. Appl Radiat Isot 69(10):1422–1435. https://doi.org/10.1016/j.apradiso.2011.06.009

    Article  CAS  PubMed  Google Scholar 

  16. Li PF, Sun Q, Hu JJ, Jia HL, Xue L (2022) Effect of the pore structure of granite and gabbro after heat treatment on the radon emission rate. Environ Sci Pollut Res 29:36801–36813. https://doi.org/10.1007/s11356-021-18152-4

    Article  CAS  Google Scholar 

  17. Van der Molen I (1981) The shift of the α-β transition temperature of quartz associated with the thermal expansion of granite at high pressure. Tectonophysics 73(4):323–342. https://doi.org/10.1016/0040-1951(81)90221-3

    Article  Google Scholar 

  18. Hassan NM, Tokonami S, Fukushi M (2011) A simple technique for studying the dependence of radon and thoron exhalation rate from building materials on absolute humidity. J Radioanal Nucl Chem 287(1):185–191. https://doi.org/10.1007/s10967-010-0665-7

    Article  CAS  Google Scholar 

  19. Janik M, Omori Y, Yonehara H (2015) Influence of humidity on radon and thoron exhalation rates from building materials. Appl Radiat Isot 95:102–107. https://doi.org/10.1016/j.apradiso.2014.10.007

    Article  CAS  PubMed  Google Scholar 

  20. Gomes MEP, Neves LJPF, Coelho F, Carvalho A, Sousa M, Pereira AJSC (2011) Geochemistry of granites and metasediments of the urban area of Vila Real (northern Portugal) and correlative radon risk. Environ Earth Sci 64(2):497–502. https://doi.org/10.1007/s12665-010-0873-z

    Article  CAS  Google Scholar 

  21. Singh H, Singh J, Singh S, Bajwa BS (2008) Radon exhalation rate and uranium estimation study of some soil and rock samples from Tusham ring complex, India using SSNTD technique. Radiat Meas 43:S459–S462. https://doi.org/10.1016/j.radmeas.2008.04.060

    Article  CAS  Google Scholar 

  22. Martins LMO, Gomes MEP, Neves LJPF, Pereira AJSC (2013) The influence of geological factors on radon risk in groundwater and dwellings in the region of Amarante (Northern Portugal). Environ Earth Sci 68(3):733–740. https://doi.org/10.1007/s12665-012-1774-0

    Article  CAS  Google Scholar 

  23. Kobeissi MA, El-Samad O, Rachidi I (2013) Health assessment of natural radioactivity and radon exhalation rate in granites used as building materials in Lebanon. Radiat Prot Dosim 153(3):342–351. https://doi.org/10.1093/rpd/ncs110

    Article  CAS  Google Scholar 

  24. Nassiri P, Ebrahimi H, Shalkouhi PJ (2011) Evaluation of radon exhalation rate from granite stone. J Sci Ind Res 70(3):230–231

    CAS  Google Scholar 

  25. Ek J, Ek BM (1996) Radium and uranium concentrations in two eskers with enhanced radon emission. Environ Int 22:495–498. https://doi.org/10.1016/S0160-4120(96)00151-1

    Article  Google Scholar 

  26. Hassan NM, Ishikawa T, Hosoda M, Iwaoka K, Sorimachi A, Sahoo SK, Tokonami S (2011) The effect of water content on the radon emanation coefficient for some building materials used in Japan. Radiat Meas 46(2):232–237. https://doi.org/10.1016/j.radmeas.2010.11.006

    Article  CAS  Google Scholar 

  27. Fournier F, Groetz JE, Jacob F, Crolet JM, Lettner H (2005) Simulation of radon transport through building materials: influence of the water content on radon exhalation rate. Transp Porous Media 59(2):197–214. https://doi.org/10.1007/s11242-004-1489-0

    Article  CAS  Google Scholar 

  28. Faheem M (2008) Radon exhalation and its dependence on moisture content from samples of soil and building materials. Radiat Meas 43(8):1458–1462. https://doi.org/10.1016/j.radmeas.2008.02.023

    Article  CAS  Google Scholar 

  29. Ji D, Liu FD, Zhou JL (2011) Influence of porosity on radon emanation rate of building materials. Chin J Radiol Health 20(04):483–484

    Google Scholar 

  30. Banerjee KS, Basu A, Guin R, Sengupta D (2011) Radon (222Rn) level variations on a regional scale from the Singhbhum Shear Zone, India: a comparative evaluation between influence of basement U-activity and porosity. Radiat Phys Chem 80(5):614–619. https://doi.org/10.1016/j.radphyschem.2010.12.015

    Article  CAS  Google Scholar 

  31. Misdaq MA, Khajmi H, Ktata A (1998) Study of the influence of porosity on the radon emanation coefficient in different building material samples by combining the SSNTD technique with Monte Carlo simulations. Radiat Phys Chem 53(4):385–390. https://doi.org/10.1016/S0969-806X(98)00021-8

    Article  CAS  Google Scholar 

  32. Hall FR, Boudette EL, Olszewski WJ (2020) Geologic controls and radon occurrence in New England. Radon Radium Other Radioact Ground Water 124(6):910–928. https://doi.org/10.1016/j.pgeola.2013.03.004

    Article  Google Scholar 

  33. Page KD (1999) Uranium, Radium, and Radon in streams, domestic well waters, and soils: a GIS analysis of geological, geochemical, and geophysical relationships. http://hdl.handle.net/10222/79401

  34. Liu CY, He MC (2011) Research on the sensitive chemical weathering indices to rock weathering. Earth Environ 39(03):349–354

    CAS  Google Scholar 

  35. Chen T, Jiang YL, Song GQ, Liu H, Zhao LQ (2009) Application of chemical weathering indices in the study on unconformity. J Southwest Pet Univ(Sci Technol Ed) 31(01): 41–44+185–186.

  36. Price JR, Velbel MA (2003) Chemical weathering indices applied to weathering profiles developed on heterogeneous felsic metamorphic parent rocks. Chem Geol 202(3–4):397–416. https://doi.org/10.1016/j.chemgeo.2002.11.001

    Article  CAS  Google Scholar 

  37. Buggle B, Glaser B, Hambach U, Gerasimenko N, Marković S (2011) An evaluation of geochemical weathering indices in loess—paleosol studies. Quat Int 240(1–2):12–21. https://doi.org/10.1016/j.quaint.2010.07.019

    Article  Google Scholar 

  38. Hu RL, Yue ZQ, Wang LZ, Qu YX, Wang SJ (2005) Application of Plagioclase solution degree to evaluating the weathering degree of CDG of granites. Geol Rev 06:649–655

    Google Scholar 

  39. Zhang L, Ma XH, Guo QJ, Wang SQ, Ai XY, Shi ZL (2011) Consideration and measurements of radon exhalation rate. Radiat Prot 31(06):379–384

    Google Scholar 

  40. Morawska L, Phillips CR (1993) Dependence of the radon emanation coefficient on radium distribution and internal structure of the material. Geochim Cosmochim Acta 57(8):1783–1797. https://doi.org/10.1016/0016-7037(93)90113-B

    Article  CAS  Google Scholar 

  41. Jonassen N (1983) The determination of radon exhalation rates. Health Phys 45(2):369–376

    Article  CAS  PubMed  Google Scholar 

  42. Li G (2014) Discussion on the best time interval for measuring radon exhalation rate in two different media. Chin J Radiol Health 23(04):368–370

    Google Scholar 

  43. Liu Z, Ma G, Zeng L, Song F, Liu Q, Wang Y, Li P (2017) The Factors influencing the accuracy of radon concentration using RAD7 radon monitor measurement and analysis of indoor radon in Beijing. Chin J Radiol Health 26(3):348–350. https://doi.org/10.13491/j.cnki.issn.1004-714x.2017.03.033

    Article  Google Scholar 

  44. Wu FQ, Jiang ZY (2019) A summary of progress on weathered layer research both at home and abroad. Coal Geol China 31(S1):5–11

    Google Scholar 

  45. Gupta AS, Rao SK (2001) Weathering indices and their applicability for crystalline rocks. Bull Eng Geol Environ 60:201–221. https://doi.org/10.1007/s100640100113

    Article  CAS  Google Scholar 

  46. Kim S, Park HD (2003) The relationship between physical and chemical weathering indices of granites around Seoul. Korea Bull Eng Geol Environ 62(3):207–212. https://doi.org/10.1007/s10064-003-0192-7

    Article  CAS  Google Scholar 

  47. Liu X, Zhang X, Kong L, Wang G, Liu H (2022) Chemical weathering indices and how they relate to the mechanical parameters of granite regolith from southern China. CATENA 216:106400. https://doi.org/10.1016/j.catena.2022.106400

    Article  CAS  Google Scholar 

  48. McLennan SM (1993) Weathering and global denudation. J Geol 101(2):295–303

    Article  Google Scholar 

  49. Yuan GH, Xiao GQ, Tong Y (2019) Insights on how to correctly classify the degree of weathering of rocks. West-China Explor Eng 31(08): 22–23+26

  50. El-Dine NW, El-Shershaby A, Ahmed F, Abdel-Haleem AS (2001) Measurement of radioactivity and radon exhalation rate in different kinds of marbles and granite. Appl Radiat Isot 55(6):853–860. https://doi.org/10.1016/S0969-8043(01)00107-5

    Article  CAS  PubMed  Google Scholar 

  51. Nikolić MD, Simović RD (2015) Radon exhalation rates of some granites used in Serbia. Nucl Technol Radiat Prot 30(2):145–148. https://doi.org/10.2298/NTRP1502145N

    Article  Google Scholar 

  52. Pereira A, Lamas R, Miranda M, Domingos F, Neves L, Ferreira N, Costa L (2017) Estimation of the radon production rate in granite rocks and evaluation of the implications for geogenic radon potential maps: a case study in Central Portugal. J Environ Radioact 166:270–277. https://doi.org/10.1016/j.jenvrad.2016.08.022

    Article  CAS  PubMed  Google Scholar 

  53. Harb S, Ahmed NK, Elnobi S (2016) Effect of grain size on the radon exhalation rate and emanation coefficient of soil, phosphate and building material samples. J Nucl Part Phys 6:80–87. https://doi.org/10.5923/j.jnpp.20160604.02

    Article  Google Scholar 

  54. Pereira D, Neves L, Pereira A, Peinado M, Blanco JA, Tejado JJ (2012) A radiological study of some ornamental stones: the bluish granites from Extremadura (Spain). Nat Earth Syst Sci 12(150):395–401. https://doi.org/10.5194/nhess-12-395-2012

    Article  Google Scholar 

  55. Hellmuth KH, Siitari-Kauppi M, Arvela H, Lindberg A, Fonteneaud L, Sardinid P (2017) Radon emanation from fresh, altered and disturbed granitic rock characterized by 14C-PMMA impregnation and autoradiography. Appl Radiat Isot 127:195–208. https://doi.org/10.1016/j.apradiso.2017.06.009

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Grant No. U1703123) and the 2019 Open Fund of State Key Laboratory of Nuclear Resources and Environment, China. (Grant No. NRE 1910), and Natural Science Foundation of Hunan Province, China (Grant No. 2020JJ5481). We thank the reviewers for their valuable comments on the improvement of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-shi Xie.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, Sq., Xie, Ys., Zhang, Mh. et al. The influence of weathering degree on radon exhalation in granite. J Radioanal Nucl Chem 331, 4469–4478 (2022). https://doi.org/10.1007/s10967-022-08541-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08541-5

Keywords

Navigation