Skip to main content
Log in

Immobilization of simulated strontium contaminated zeolite: microstructure and chemical durability

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this study, strontium (Sr) contaminated zeolite was sintered at 1500 °C for 1 h, and the radionuclide was fixed into the glass matrix. The phase evolution, microstructure, morphology, mechanical property, and chemical durability were investigated. The results exhibited that the solid solubility limit of the glass solidified body could reach up to 72 wt%. Compared with other solidified forms of radioactive wastes, the glass matrix synthesized in this study has good mechanical properties and chemical durability. Therefore, high-temperature sintering is a potential method for disposing of the radioactively contaminated zeolite waste.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Zhang H, Li C, Chen X, Fu H, Chen Y, Ning S, Wang X (2022) Layered ammonium vanadate nanobelt as efficient adsorbents for removal of Sr2+ and Cs+ from contaminated water. J Colloid Interface Sci 615:110–123

    Article  PubMed  CAS  Google Scholar 

  2. Povinec PP, Hirose K, Aoyama M (2012) Radiostrontium in the western north pacific: characteristics, behavior, and the fukushima impact. Environ Sci Technol 46(18):10356–10363

    Article  PubMed  CAS  Google Scholar 

  3. Casacuberta N, Masqué P, Garcia-Orellana J, Garcia-Tenorio R, Buesseler KO (2013) 90Sr and 89Sr in seawater off japan as a consequence of the fukushima dai-ichi nuclear accident. Biogeosciences 10(6):3649–3659

    Article  Google Scholar 

  4. Bikit K, Knezevic J, Mrdja D, Todorovic N, Kuzmanovic P, Forkapic S, Bikit I (2021) Application of 90Sr for industrial purposes and dose assessment. Radiat Phys Chem 179:109260

    Article  CAS  Google Scholar 

  5. Jiménez-Reyes M, Almazán-Sánchez PT, Solache-Ríos M (2021) Radioactive waste treatments by using zeolites. A short review J Environ Radioact 233:106610

    Article  Google Scholar 

  6. Abukhadr MR, Ali SM, El-Sherbeeny AM, Soliman ATA, Abd Elatty E (2020) Effective and environmental retention of some radioactive elements (U (VI), Sr (II), and Ba (II)) within bentonite/zeolite hybrid structure; equilibrium and realistic study. Inorg Chem Commun 119:108053

    Article  Google Scholar 

  7. Li Z, Ning S, Zhu H, Wang X, Yin X, Fujita T, Wei Y (2022) Novel NbCo-MOF as an advanced peroxymonosulfate catalyst for organic pollutants removal: Growth, performance and mechanism study. Chemosphere 288:132600

    Article  PubMed  CAS  Google Scholar 

  8. Moore H R: Permeable treatment wall pilot project at the West Valley demonstration project. (2000)

  9. Osmanlioglu AE (2006) Treatment of radioactive liquid waste by sorption on natural zeolite in Turkey. J Hazard Mater 137(1):332–335

    Article  PubMed  CAS  Google Scholar 

  10. Liang J, Li J, Li X, Liu K, Wu L, Shan G (2020) The sorption behavior of CHA-type zeolite for removing radioactive strontium from aqueous solutions. Sep Purif Technol 230:115874

    Article  CAS  Google Scholar 

  11. Lihareva N, Dimowa L, Petrov O, Tzvetanova Y, Atanasova-Vladimirova S (2019) Study of the kinetics and mechanism of Sr2+ sorption by clinoptilolite. J Radioanal Nucl Chem 321(1):31–38

    Article  CAS  Google Scholar 

  12. Kwon S, Kim C, Han E, Lee H, Cho HS, Choi M (2021) Relationship between zeolite structure and capture capability for radioactive cesium and strontium. J Hazard Mater 408:124419

    Article  PubMed  CAS  Google Scholar 

  13. Abbas TK, Rashid KT, Alsalhy QF (2022) NaY zeolite-polyethersulfone-modified membranes for the removal of cesium-137 from liquid radioactive waste. Chem Eng Res Des 179:535–548

    Article  CAS  Google Scholar 

  14. Kumar MM, Irshad KA, Jena H (2021) Removal of Cs+ and Sr2+ ions from simulated radioactive waste solutions using Zeolite-A synthesized from kaolin and their structural stability at high pressures. Microporous Mesoporous Mater 312:110773

    Article  Google Scholar 

  15. Cantrell K J: A permeable reactive wall composed of clinoptilolite for containment of Sr-90 in Hanford groundwater (No. CONF-960804-Vol 2). American Nuclear Society, Inc., La Grange Park, IL (United States). (1996)

  16. Kimura R, Inagaki Y, Idemitsu K, Arima T (2018) Vitrification processes of simulated cesium sorbing zeolite waste. Prog Nucl Energy 108:497–502

    Article  CAS  Google Scholar 

  17. Meshram J, Ali P, Tiwari V (2010) Zeolite as an efficient and recyclable activation surface for the synthesis of bis-thiazolidinones: theoretical screening owing to experimental biology. Green Chem Lett Rev 3(3):195–200

    Article  CAS  Google Scholar 

  18. Tsuno H, Nishimura F (1994) Somiya I (1994) Removal of ammonium nitrogen in bio-zeolite reactor. Doboku Gakkai Ronbunshu 503:159–166

    Article  Google Scholar 

  19. Ibrahim HA, El-Kamash AM, Hanafy M, Abdel-Monem NM (2008) Examination of the use of synthetic Zeolite NaA–X blend as backfill material in a radioactive waste disposal facility: thermodynamic approach. Chem Eng J 144(1):67–74

    Article  CAS  Google Scholar 

  20. Rahman RA, Ibrahim HA, Monem NA (2009) Long-term performance of zeolite Na AX blend as backfill material in near surface disposal vault. Chem Eng J 149(1–3):143–152

    Article  Google Scholar 

  21. Osmanlioglu AE (2015) Decontamination and solidification of liquid radioactive waste using natural zeolite. J Mater Cycles Waste Manage 17(4):690–694

    Article  CAS  Google Scholar 

  22. Albino V, Cioffi R, Pansini M, Colella C (1995) Disposal of lead-containing zeolite sludges in cement matrix. Environ Technol 16(2):147–156

    Article  CAS  Google Scholar 

  23. Ojovan MI, Lee WE (2005) Index-an introduction to nuclear waste immobilisation. Introduct Nucl Waste Immobil 13:307–315

    Google Scholar 

  24. Breitzke H, Eremin I, Manske D, Antipov EV, Lüders K (2004) Formation of magnetic moments in the cuprate superconductor Hg0.8Cu0.2Ba2Ca2Cu3O8+δ below Tc seen by NQR. Phys C Supercond 406(1–2):27–36

    Article  CAS  Google Scholar 

  25. Ojovan MI, Lee WE, Kalmykov SN (2019) An introduction to nuclear waste immobilisation. Elsevier, Netharland

    Google Scholar 

  26. Donald IW (2010) Waste immobilization in glass and ceramic based hosts: radioactive, toxic and hazardous wastes. Wiley, New York

    Book  Google Scholar 

  27. Caurant D, Loiseau P, Majerus O, Aubin-Chevaldonnet V, Bardez I, Quintas A (2007) Glasses, glass-ceramics and ceramics for immobilization of highly radioactive nuclear wastes. Hauppauge Nova Science, New York

    Google Scholar 

  28. Vienna J D, Fluegel A, Kim D S, Hrma P R: Glass property data and models for estimating high-level waste glass volume (No PNNL-18501). Pacific Northwest National Lab (PNNL), Richland, WA (United States). (2009)

  29. Kim KW, Foster RI, Kim J, Sung HH, Yang D, Shon WJ, Lee KY (2019) Glass-ceramic composite wasteform to immobilize and stabilize a uranium-bearing waste generated from treatment of a spent uranium catalyst. J Nucl Mater 516:238–246

    Article  CAS  Google Scholar 

  30. Jantzen CM, Kaplan DI, Bibler NE, Peeler DK, Plodinec MJ (2008) Performance of a buried radioactive high level waste (HLW) glass after 24 years. J Nucl Mater 378(3):244–256

    Article  CAS  Google Scholar 

  31. Inagaki Y, Mitsui SI, Makino H, Ishiguro K, Kamei G, Kawamura K, Maeda T (2004) Status of studies on HLW glass performance for confirming its validity in assessment. Genshiryoku Bakkuendo Kenkyu 10:13–17

    Google Scholar 

  32. Ojovan MI, Lee WE (2011) Glassy wasteforms for nuclear waste immobilization. Metall Mater Trans A 42(4):837–851

    Article  CAS  Google Scholar 

  33. Wei GL, Shu XY, Zhang ZT, Li QY, Liu Y, Wang X, Xie Y, Li BX, Shao DD, Lu X (2020) B2O3–Bi2O3–ZnO based materials for low-sintering temperature immobilization of iodine adsorbed waste. J Solid State Chem 289:121518

    Article  CAS  Google Scholar 

  34. ASTM Committee Standard test methods for determining chemical durability of nuclear, hazardous, and mixed waste glasses and multiphase glass ceramics: the product consistency test (PCT). ASTM International, West Conshohocken. (2002)

  35. Dacheux N, Clavier N, Robisson AC, Terra O, Audubert F, Lartigue JE, Guy C (2004) Immobilisation of actinides in phosphate matrices. C R Chim 7(12):1141–1152

    Article  CAS  Google Scholar 

  36. Li Z, Cao Y, Yi F, Mao X, Wang Y (2022) Systematic investigation on durability of glass–ceramics containing CePO4: orthogonal analysis. J Radioanal Nucl Chem 7:1–14

    Google Scholar 

  37. Tang HX, Shu XY, Huang WX, Miao YL, Shi MH, Chen SZ, Li BS, Luo F, Xiao DD, Lu XY (2021) Rapid solidification of Sr-contaminated soil by consecutive microwave sintering: mechanism and stability evaluation. J Hazard Mater 407:124761

    Article  PubMed  CAS  Google Scholar 

  38. Nakamoto K (2008) Applications in organometallic chemistry. John Wiley, New York

    Book  Google Scholar 

  39. Nakamoto K (2008) Infrared and raman spectra of inorganic and coordination compounds. Theory Appl Inorg Chem 5:88–97

    Google Scholar 

  40. Liang LY, Liu ZM, Cao HT, Pan XQ (2010) Microstructural, optical, and electrical properties of SnO thin films prepared on quartz via a two-step method. ACS Appl Mater Interfaces 2(4):1060–1065

    Article  PubMed  CAS  Google Scholar 

  41. Chen HS, Sun ZY, Shao JC (2011) Investigation on FT-IR spectroscopy for eight different sources of SiO2. Bull. Am Ceram Soc. 30(4):934–937

    CAS  Google Scholar 

  42. Prabha RD, Santhanalakshmia J, ArunPrasath R (2013) Analysis of micellar behavior of as synthesized sodium itaconate monoesters with various hydrophobic chain lengths, in aqueous media. Research Journal of Chemical Sciences 2231:606X

    Google Scholar 

  43. Wei GL, Li BS, Zhang ZT, Chen SZ, Shu XY, Wang X, Liu Y, Shao DD, Lu XR (2019) Boron assisted low temperature immobilization of iodine adsorbed by silver-coated silica gel. J Nucl Mater 526:151758

    Article  CAS  Google Scholar 

  44. Shu XY, Li YP, Huang WX, Chen SZ, Chen XZ, Zhang S, Li BS, Wang XQ, Qing Q, Lu XR (2020) Rapid vitrification of uranium-contaminated soil: Effect and mechanism. Environ Pollut 263:114539

    Article  CAS  Google Scholar 

  45. Lu P, Xia W, Jiang H, Zhao H (2015) Analysis of high alumina silicate glass with infrared and raman spectroscopy. Bull Chin Ceram Soc 34:878–887

    CAS  Google Scholar 

  46. Vicente-Rodríguez MA, Suarez M, Bañares-Muñoz MA, de Dios L-G (1996) Comparative FT-IR study of the removal of octahedral cations and structural modifications during acid treatment of several silicates. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 52(13):1685–1694

    Article  Google Scholar 

  47. Etchepare J (1970) Interprétation des spectres de diffusion Raman de verres de silice binaires. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 26(11):2147–2154

    Article  CAS  Google Scholar 

  48. Bock JAN, Su GJ (1970) Interpretation of the infrared spectra of fused silica. J Am Ceram Soc 53(2):69–73

    Article  CAS  Google Scholar 

  49. Kim JS, Kwon SK, Sanchez M, Cho GC (2011) Geological storage of high level nuclear waste. KSCE J Civ Eng 15(4):721–737

    Article  Google Scholar 

  50. Donald IW, Metcalfe BL, Taylor RNJ (1997) The immobilization of high level radioactive wastes using ceramics and glasses. J Mater Sci 32(22):5851–5887

    Article  CAS  Google Scholar 

  51. Ersundu MÇ, Ersundu AE, Gedikoğlu N, Şakar E, Büyükyıldız M, Kurudirek M (2019) Physical, mechanical and gamma-ray shielding properties of highly transparent ZnO-MoO3-TeO2 glasses. J Non-Cryst Solids 524:119648

    Article  CAS  Google Scholar 

  52. Connelly AJ, Hand RJ, Bingham PA, Hyatt NC (2011) Mechanical properties of nuclear waste glasses. J Nucl Mater 408(2):188–193

    Article  CAS  Google Scholar 

  53. Weber WJ, Matzke H, Routbort JL (1984) Indentation testing of nuclear-waste glasses. J Mater Sci 19(8):2533–2545

    Article  CAS  Google Scholar 

  54. O'Holleran T P, DiSanto T, Johnson S G, Goff K M: Comparison of mechanical properties of glass-bonded sodalite and borosilicate glass high-level waste forms (No ANL/NT/CP-101840). In: Argonne National Lab, IL (US) (2000)

  55. Tang H, Li Y, Huang W, Chen S, Luo F, Shu X, Lu X (2019) Chemical behavior of uranium contaminated soil solidified by microwave sintering. J Radioanal Nucl Chem 322(3):2109–2117

    Article  CAS  Google Scholar 

  56. Zhang RZ, Gao YW, Wang JS, Li L, Su WS (2011) Leaching properties of immobilization of HLW into SrTiO3 ceramics. Advanced Materials Research 332–334:1807–1811

    Google Scholar 

  57. Lai ZA, Wang HB, Hu YA, Yan TA, Lu ZA, Lv SA, Zhang HC (2019) Rapid solidification of highly loaded high-level liquid wastes with magnesium phosphate cement. Ceram Int 45(4):5050–5057

    Article  CAS  Google Scholar 

  58. Hart KP, Vance ER, Day RA, Begg BD, Angel PJ, Jostsons A (1995) Immobilization of separated Tc and Cs/Sr in synroc. MRS Online Proc Libr 412(1):281–287

    Article  Google Scholar 

  59. Bao W, Xu S, Li L, Song C, Zhang J, Zhu Y (2002) Solidification of Sr-containing stripping solutions in titanate ceramics. J Nucl Mater 301(2–3):237–241

    Article  CAS  Google Scholar 

  60. Bunker BC (1994) Molecular mechanisms for corrosion of silica and silicate glasses. J Non-Cryst Solids 179:300–308

    Article  CAS  Google Scholar 

  61. Komai S, Hirano M, Ohtsu N (2020) Spectral analysis of Sr 3d XPS spectrum in Sr-containing hydroxyapatite. Surf Interface Anal 52(12):1–6

    Article  Google Scholar 

  62. Bourlier Y, Bouttemy M, Olivier P et al (2018) Investigation of InAlN Layers Surface Reactivity after Thermal Annealings: A Complete XPS Study for HEMT. ECS J Solid State Sci Technol 7(6):329–338

    Article  Google Scholar 

  63. Tago T, Kataoka N, Tanaka H et al (2017) XPS study from a clean surface of Al2O3 single crystals. Procedia Eng 216:175–181

    Article  Google Scholar 

  64. Leinen D, Lassaletta, et al (1996) Ion beam induced chemical vapor deposition procedure for the preparation of oxide thin films. II. preparation and characterization of AlxTiyOz thin films. J Vac Sci Technol A 14:2842–2848

    Article  CAS  Google Scholar 

  65. Shalvoy RB, Reucroft PJ, Davis BH (1979) Characterization of coprecipitated nickel on silica methanation catalysts by X-ray photoelectron spectroscopy - ScienceDirect. J Catal 56(3):336–348

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors appreciate the financial support provided by the Research Fund Program of Guangdong Key Laboratory of Radioactive and Rare Resource Utilization (2018B030322009), and the Project of State Key Laboratory of Environment- Friendly Energy Materials, Southwest University of Science and Technology (No. 20FKSY10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xirui Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, M., Luo, F., Miao, Y. et al. Immobilization of simulated strontium contaminated zeolite: microstructure and chemical durability. J Radioanal Nucl Chem 331, 4099–4110 (2022). https://doi.org/10.1007/s10967-022-08465-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08465-0

Keywords

Navigation