Skip to main content
Log in

Synthesis of molybdenum disulfide/graphene oxide composites for effective removal of U (VI) from aqueous solutions

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this study, a novel adsorbents, molybdenum disulfide-graphene oxide (MoS2–GO) composites, is prepared by one-step hydrothermal method and used for U (VI) adsorption. SEM, XRD, FT-IR, BET and XPS results show that the MoS2 layers grow on the surface of graphene oxide layers, forming MoS2–GO composite structure. The specific surfaces area of MoS2–GO composite (5.5 m2/g) is higher than that of MoS2 (2.3 m2/g). Batch adsorption experiments indicate that the adsorption process of uranium (VI) on MoS2–GO conforms to the quasi-second-order kinetic model and the adsorption isotherm accords with Langmuir model. The maximum adsorption capacity calculated by Langmuir model is 136 mg·g−1 at pH 5.0 and 298 K. Meanwhile, MoS2–rGO displays excellent selectivity for U (VI) in multicomponent metal ion solution. The increasement in specific surface area and the introduction of GO that rich in O-containing groups, provide more accessible binding sites for U (VI), which greatly enhance its uranium uptake capability. This work shows the potential of MoS2–GO as novel and promising materials in the efficient elimination of U (VI) from contaminated water and industrial effluents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yang S, Li Q, Chen L, Chen Z, Pu Z, Wang H, Yu S, Hu B, Chen J, Wang X (2019) Ultrahigh sorption and reduction of Cr(VI) by two novel core-shell composites combined with Fe3O4 and MoS2. J Hazard Mater 379:120797. https://doi.org/10.1016/j.jhazmat.2019.120797

    Article  CAS  PubMed  Google Scholar 

  2. Liu Y, Cao X, Hua R, Wang Y, Liu Y, Pang C, Wang Y (2010) Selective adsorption of uranyl ion on ion-imprinted chitosan/PVA cross-linked hydrogel. Hydrometallurgy 104:150–155. https://doi.org/10.1016/j.hydromet.2010.05.009

    Article  CAS  Google Scholar 

  3. Yuan D, Chen L, Xiong X, Yuan L, Liao S, Wang Y (2016) Removal of uranium (VI) from aqueous solution by amidoxime functionalized superparamagnetic polymer microspheres prepared by a controlled radical polymerization in the presence of DPE. Chem Eng J 285:358–367. https://doi.org/10.1016/j.cej.2015.10.014

    Article  CAS  Google Scholar 

  4. Wang J, Ma R, Li L, Gu P, Wang X (2019) Chitosan modified molybdenum disulfide composites as adsorbents for the simultaneous removal of U(VI), Eu(III), and Cr(VI) from aqueous solutions. Cellulose 27:1635–1648. https://doi.org/10.1007/s10570-019-02885-0

    Article  CAS  Google Scholar 

  5. Liu Y, Ouyang Y, Huang D, Jiang C, Liu X, Wang Y, Dai Y, Yuan D, Chew JW (2020) N, P and S co-doped carbon materials derived from polyphosphazene for enhanced selective U(VI) adsorption. Sci Total Environ 706:136019. https://doi.org/10.1016/j.scitotenv.2019.136019

    Article  CAS  PubMed  Google Scholar 

  6. Liu Y, Zhao Z, Yuan D, Wang Y, Dai Y, Chew JW (2018) Fast and high amount of U(VI) uptake by functional magnetic carbon nanotubes with phosphate group. Ind Eng Chem Res 57:14551–14560. https://doi.org/10.1021/acs.iecr.8b03864

    Article  CAS  Google Scholar 

  7. Wang G, Liu J, Wang X, Xie Z, Deng N (2009) Adsorption of uranium (VI) from aqueous solution onto cross-linked chitosan. J Hazard Mater 168:1053–1058. https://doi.org/10.1016/j.jhazmat.2009.02.157

    Article  CAS  PubMed  Google Scholar 

  8. Xie XQ, Wang YF, Xiong Z, Li HZ, Yao C (2020) Highly efficient removal of uranium(VI) from aqueous solution using poly(cyclotriphosphazene-co-polyethyleneimine) microspheres. J Radioanal Nucl Chem 326:1867–1877

    Article  CAS  Google Scholar 

  9. Sheng G, Shao X, Li Y, Li J, Dong H, Cheng W, Gao X, Huang Y (2014) Enhanced removal of uranium(VI) by nanoscale zerovalent iron supported on Na-bentonite and an investigation of mechanism. J Phys Chem A 118:2952–2958. https://doi.org/10.1021/jp412404w

    Article  CAS  PubMed  Google Scholar 

  10. Zhong X, Sun Y, Zhang Z, Dai Y, Wang Y, Liu Y, Hua R, Cao X, Liu Y (2019) A new hydrothermal cross-linking ion-imprinted chitosan for high-efficiency uranium removal. J Radioanal Nucl Chem 322:901–911. https://doi.org/10.1007/s10967-019-06794-1

    Article  CAS  Google Scholar 

  11. Zhuang S, Cheng R, Kang M, Wang J (2018) Kinetic and equilibrium of U(VI) adsorption onto magnetic amidoxime-functionalized chitosan beads. J Clean Prod 188:655–661. https://doi.org/10.1016/j.jclepro.2018.04.047

    Article  CAS  Google Scholar 

  12. Romanchuk AY, Slesarev AS, Kalmykov SN, Kosynkin DV, Tour JM (2013) Graphene oxide for effective radionuclide removal. Phys Chem Chem Phys 15:2321–2327. https://doi.org/10.1039/c2cp44593j

    Article  CAS  PubMed  Google Scholar 

  13. Zong P, Wang S, Zhao Y, Wang H, Pan H, He C (2013) Synthesis and application of magnetic graphene/iron oxides composite for the removal of U(VI) from aqueous solutions. Chem Eng J 220:45–52. https://doi.org/10.1016/j.cej.2013.01.038

    Article  CAS  Google Scholar 

  14. Wang S (2019) Preparation of amino-like organic compound modified bentonite and its adsorption for U(VI). Donghua university of technology, Master

    Google Scholar 

  15. Sadeek SA, Abd El-Magied MO, El-Sayed MA, Amine MM (2014) Selective solid-phase extraction of U(VI) by amine functionalized glycidyl methacrylate. J Environ Chem Eng 2:293–303. https://doi.org/10.1016/j.jece.2013.12.015

    Article  CAS  Google Scholar 

  16. Semnani F, Asadi Z, Samadfam M, Sepehrian H (2012) Uranium(VI) sorption behavior onto amberlite CG-400 anion exchange resin: Effects of pH, contact time, temperature and presence of phosphate. Ann Nucl Energy 48:21–24. https://doi.org/10.1016/j.anucene.2012.05.010

    Article  CAS  Google Scholar 

  17. Abd El-Magied MO (2016) Sorption of uranium ions from their aqueous solution by resins containing nanomagnetite particles. J Eng 2016:1–11. https://doi.org/10.1155/2016/7214348

    Article  CAS  Google Scholar 

  18. Fan Z (2018) Study on adsorption, migration and transformation of radionuclides U and Th in soil by phosphate. Master, Donghua university of technology,

  19. Feng Y, Jiang H, Li S, Wang J, Jing X, Wang Y, Chen M (2013) Metal–organic frameworks HKUST-1 for liquid-phase adsorption of uranium. Colloids Surf A 431:87–92. https://doi.org/10.1016/j.colsurfa.2013.04.032

    Article  CAS  Google Scholar 

  20. Wang L, Tao W, Yuan L, Liu Z, Huang Q, Chai Z, Gibson JK, Shi W (2017) Rational control of the interlayer space inside two-dimensional titanium carbides for highly efficient uranium removal and imprisonment. Chem Commun (Camb) 53:12084–12087. https://doi.org/10.1039/c7cc06740b

    Article  CAS  Google Scholar 

  21. Hwang SK, Kang S-M, Rethinasabapathy M, Roh C, Huh YS (2020) MXene: An emerging two-dimensional layered material for removal of radioactive pollutants. Chem Eng J, 397. https://doi.org/10.1016/j.cej.2020.125428

  22. Ishag A, Sun Y (2021) Recent advances in two-dimensional MoS2 nanosheets for environmental application. Ind Eng Chem Res 60:8007–8026. https://doi.org/10.1021/acs.iecr.1c01311

    Article  CAS  Google Scholar 

  23. Zhao Q, Zhang Z, Ouyang X (2018) Adsorption of radionuclides on the monolayer MoS2. Mater Res Express 5. https://doi.org/10.1088/2053-1591/aaba90

  24. Liu Y, Fang C, zhang S, Zhong W, Wei Q, Wang Y, Dai Y, Wang Y, Zhang Z, Liu Y (2020) Effective adsorption of uranyl ions with different MoS2-exposed surfaces in aqueous solution. Surfaces Interfaces, 18. https://doi.org/10.1016/j.surfin.2019.100409

  25. Li C, Xu Q, Xu S, Zhang X, Hou X, Wu P (2017) Synergy of adsorption and photosensitization of graphene oxide for improved removal of organic pollutants. RSC Adv 7:16204–16209. https://doi.org/10.1039/c7ra01244f

    Article  CAS  Google Scholar 

  26. Zhao G, Li J, Ren X, Chen C, Wang X (2011) Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. Environ Sci Technol 45:10454–10462. https://doi.org/10.1021/es203439v

    Article  CAS  PubMed  Google Scholar 

  27. Adeleye AS, Wang X, Wang F, Hao R, Song W, Li Y (2018) Photoreactivity of graphene oxide in aqueous system: reactive oxygen species formation and bisphenol A degradation. Chemosphere 195:344–350. https://doi.org/10.1016/j.chemosphere.2017.12.095

    Article  CAS  PubMed  Google Scholar 

  28. Li Z, Chen F, Yuan L, Liu Y, Zhao Y, Chai Z, Shi W (2012) Uranium(VI) adsorption on graphene oxide nanosheets from aqueous solutions. Chem Eng J 210:539–546. https://doi.org/10.1016/j.cej.2012.09.030

    Article  CAS  Google Scholar 

  29. Du Y, Wang J, Zou Y, Yao W, Hou J, Xia L, Peng A, Alsaedi A, Hayat T, Wang X (2017) Synthesis of molybdenum disulfide/reduced graphene oxide composites for effective removal of Pb(II) from aqueous solutions. Sci Bull 62:913–922. https://doi.org/10.1016/j.scib.2017.05.025

    Article  CAS  Google Scholar 

  30. Jiang XL, Luo HJ, Yin YW, Zhou WJ (2017) Facile synthesis of MoS2/reduced graphene oxide composites for efficient removal of Cr(VI) from aqueous solutions. RSC Adv 7:24149–24156

    Article  Google Scholar 

  31. Daniela C, Marcano DVK, Jacob M. Berlin, Alexander Sinitskii, Zhengzong Sun, Alexander Slesarev LBA, Wei Lu, James M. Tour (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814

  32. Du L, Li Y, Ma X, Liu Y (2015) Spectrophotometric determination of trace uranium by Arsazo III. Metal Anal 35(1):68–71

    CAS  Google Scholar 

  33. Khan MH, Warwick P, Evans N (2006) Spectrophotometric determination of uranium with arsenazo-III in perchloric acid. Chemosphere 63:1165–1169. https://doi.org/10.1016/j.chemosphere.2005.09.060

    Article  CAS  PubMed  Google Scholar 

  34. Ren Y, Huo J, Yuan X, Guo S (2021) Preparation and microwave absorbing properties of MoS2-rGO composites. J Shanxi Univ Sci Technol 39(4):110–115. https://doi.org/10.19481/j.cnki.issn2096-398x.2021.04.017

  35. Sheng B, Liu J, Li Z, Wang M, Zhu K, Qiu J, Wang J (2015) Effects of excess sulfur source on the formation and photocatalytic properties of flower-like MoS2 spheres by hydrothermal synthesis. Mater Lett 144:153–156. https://doi.org/10.1016/j.matlet.2015.01.056

    Article  CAS  Google Scholar 

  36. Zhang B, Wang J, Wang J, Huo S, Zhang B, Tang Y (2016) Microwave absorption properties of lightweight absorber based on Fe50Ni50-coated poly(acrylonitrile) microspheres and reduced graphene oxide composites. J Magn Magn Mater 413:81–88. https://doi.org/10.1016/j.jmmm.2016.04.014

    Article  CAS  Google Scholar 

  37. Huang Y, Nielsen RJ, Goddard WA 3rd, Soriaga MP (2015) The reaction mechanism with free energy barriers for electrochemical dihydrogen evolution on MoS2. J Am Chem Soc 137:6692–6698. https://doi.org/10.1021/jacs.5b03329

    Article  CAS  PubMed  Google Scholar 

  38. Yu XL, Tong SR, Ge MF, Zuo JC, Cao CY, Song WG (2013) One-step synthesis of magnetic composites of cellulose@iron oxide nanoparticles for arsenic removal. J Mater Chem A 1:959–965

    Article  CAS  Google Scholar 

  39. Yu SJ, Wang J, Song S, Sun KY, Li J, Wang XX, Chen ZS, Wang XK (2017) One-pot synthesis of graphene oxide and Ni-Al layered double hydroxides nanocomposites for the efficient removal of U(VI) from wastewater. Sci China Chem 60:415–422

    Article  Google Scholar 

  40. Zhang XF, Shao XN, Liu SP (2012) Dual fluorescence of graphene oxide: a time-resolved study. J Phys Chem A 116:7308–7313

    Article  CAS  Google Scholar 

  41. Singh C, Mishra AK, Paul A (2015) Highly conducting reduced graphene synthesis via low temperature chemically assisted exfoliation and energy storage application. J Mater Chem A 3:18557–18563

    Article  CAS  Google Scholar 

  42. Tan LC, Wang J, Liu Q, Sun YB, Jing XY, Liu LH, Liu JY, Song DL (2015) The synthesis of a manganese dioxide-iron oxide-graphene magnetic nanocomposite for enhanced uranium(VI) removal. New J Chem 39:868–876

    Article  CAS  Google Scholar 

  43. Yang AL (2018) Preparation and adsorption properties of composite adsorbent graphene oxide-chitosan. Rare Metal Mat Eng 47:1583–1588

    CAS  Google Scholar 

  44. Ganesapillai M, Simha P, Zabaniotou A (2015) Closed-loop fertility cycle: Realizing sustainability in sanitation and agricultural production through the design and implementation of nutrient recovery systems for human urine. Sustain Prod Consump 4:36–46. https://doi.org/10.1016/j.spc.2015.08.004

    Article  Google Scholar 

  45. Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156:2–10

    Article  CAS  Google Scholar 

  46. Yao C (2000) Extended and improved Langmuir equation for correlating adsorption equilibrium data. Sep Purif Technol 19:237–242

    Article  CAS  Google Scholar 

  47. Umpleby RJ, Baxter S, Bode M, Berch J, Shah RN, Shimizu K (2001) Application of the Freundlich adsorption isotherm in the characterization of molecularly imprinted polymers. Anal Chim Acta 435:35–42

    Article  CAS  Google Scholar 

  48. Shao DD, Liu XH, Hayat T, Li JX, Ren XM (2019) Poly(amidoxime) functionalized MoS2 for efficient adsorption of uranium(VI) in aqueous solutions. J Radioanal Nucl Chem 319:379–386

    Article  CAS  Google Scholar 

  49. Gu PC, Zhao CF, Wen T, Ai YJ, Zhang S, Chen WQ, Wang J, Hu BW, Wang XK (2019) Highly U(VI) immobilization on polyvinyl pyrrolidine intercalated molybdenum disulfide: experimental and computational studies. Chem Eng J 359:1563–1572

    Article  CAS  Google Scholar 

  50. Wang J, Yang SY, Cheng G, Gu PC (2020) The adsorption of europium and uranium on the sodium dodecyl sulfate modified molybdenum disulfide composites. J Chem Eng Data 65:2178–2185

    Article  CAS  Google Scholar 

  51. Wen D, Xie C, Zhang M, Dong Z, Zhai M, Zhao L (2021) DOPO-modified cellulose microsphere: preparation and application for selective adsorption U(VI) under acidic solutions. Res Square. https://doi.org/10.21203/rs.3.rs-1035340/v1

  52. Cheng WC, Ding CC, Sun YB, Wang XK (2015) Fabrication of fungus/attapulgite composites and their removal of U(VI) from aqueous solution. Chem Eng J 269:1–8

    Article  CAS  Google Scholar 

  53. Gao Y, Chen CL, Tan XL, Xu H, Zhu KR (2016) Polyaniline-modified 3D-flower-like molybdenum disulfide composite for efficient adsorption/photocatalytic reduction of Cr(VI). J Colloid Interf Sci 476:62–70

    Article  CAS  Google Scholar 

  54. Liu JF, Lin H, Dong YB, He YH, Liu W, Shi YY (2021) The effective adsorption of tetracycline onto MoS2@Zeolite-5: adsorption behavior and interfacial mechanism. J Environ Chem Eng, 9

  55. Tai SY, Liu CJ, Chou SW, Chien FSS, Lin JY, Lin TW (2012) Few-layer MoS2 nanosheets coated onto multi-walled carbon nanotubes as a low-cost and highly electrocatalytic counter electrode for dye-sensitized solar cells. J Mater Chem 22:24753–24759

    Article  CAS  Google Scholar 

  56. Wang PP, Sun H, Ji Y, Li W, Wang X (2014) Three-dimensional assembly of single-layered MoS(2). Adv Mater 26:964–969. https://doi.org/10.1002/adma.201304120

    Article  CAS  PubMed  Google Scholar 

  57. Zhou K, Zhou WJ, Liu XJ, Sang YH, Ji SZ, Li W, Lu J, Li LG, Niu WH, Liu H, Chen SW (2015) Ultrathin MoO3 nanocrystalsself-assembled on graphene nanosheets via oxygen bonding as supercapacitor electrodes of high capacitance and long cycle life. Nano Energy 12:510–520

    Article  CAS  Google Scholar 

  58. Zhang ZB, Dong ZM, Wang XX, Dai Y, Cao XH, Wang YQ, Hua R, Feng HT, Chen JR, Liu YH, Hu BW, Wang XK (2019) Synthesis of ultralight phosphorylated carbon aerogel for efficient removal of U(VI): Batch and fixed-bed column studies. Chem Eng J 370:1376–1387

    Article  CAS  Google Scholar 

  59. Zhang ZB, Dong ZM, Wang XX, Ying D, Niu FL, Cao XH, Wang YQ, Hua R, Liu YH, Wang XK (2018) Ordered mesoporous polymer-carbon composites containing amidoxime groups for uranium removal from aqueous solutions. Chem Eng J 341:208–217

    Article  CAS  Google Scholar 

  60. Chen HJ, Chen Z, Zhao GX, Zhang ZB, Xu C, Liu YH, Chen J, Zhuang L, Haya T, Wang XK (2018) Enhanced enhanced adsorption of U(VI) and Am-241(III) from wastewater using Ca/Al layered double hydroxide@carbon nanotube composites. J Hazard Mater 347:67–77

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Excellent Youth Project of Scientific Research Fund of Hunan Provincial Education Department (grant number 18B271, 19B504 and 21B0440) and Natural Science Foundation of Hunan Province (Grant number 2021JJ40457).

Author information

Authors and Affiliations

Authors

Contributions

RL: Investigation, Conceptualization, Data curation, Writing—Original draft, Writing—Review & Editing. HW: Formal analysis, Methodology, Visualization, Conceptualization, Writing—Review & Editing. CY: Editing. XZ: Validation and Editing. MW: Supervision, Writing—Review & Editing. LL: Funding acquisition, Resources, Supervision, Writing—Review & Editing.

Corresponding author

Correspondence to Hai Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 2225 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, R., Wang, H., Yue, C. et al. Synthesis of molybdenum disulfide/graphene oxide composites for effective removal of U (VI) from aqueous solutions. J Radioanal Nucl Chem 331, 3713–3722 (2022). https://doi.org/10.1007/s10967-022-08425-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08425-8

Keywords

Navigation