Skip to main content
Log in

Effect of lithium chloride inorganic salt on the performance of N-(Hydroxymethyl)acrylamide polymer-gel dosimeter in radiation therapy

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The impact of lithium chloride inorganic salt (LiCl) on the response of radiated N-(Hydroxymethyl) acrylamide (NHMA) polymer gel dosimeters was presented in this article. The NHMA-LiCl polymer dosimeters were positioned in a cubic water-phantom and then irradiated by a linac to different dose ranging from 0 to 10 Gy. The response of gel to X-ray radiation was evaluated using NMR spin–spin relaxation rate (R2 = 1/T2). Linearity relationship of dose–response s were obtained in the dose-range of 0–6 Gy. The polymer showed a significant increase in dose-sensitivity (about 50%) when LiCl concentration was increased from 0 to 2.1wt% in the linearity region of 0–6 Gy. The dependency of irradiated gel on the dose rate and the photon beam energy were not observed by adding LiCl over the range studied (less than 5%). The R2 values were decreased with increasing the scanning temperature. The gel was fairly stable after four days of irradiation. The LiCl acts as an excellent sensitizer to the polymerization of irradiated gel dosimeters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kron T, Lehmann J, Greer PB (2016) Dosimetry of ionising radiation in modern radiation oncology. Phys Med Biol 61:R167–R205

    CAS  PubMed  Google Scholar 

  2. Rabaeh KA, Eyadeh MM, Hailat TF, Aldweri FM, Alheet SM, Eid RM (2018) Characterization of ferrous-methylthymol blue-polyvinyl alcohol gel dosimeters using nuclear magnetic resonance and optical techniques. Radiat Phys Chem 148:25–32

    CAS  Google Scholar 

  3. Jin H, Palta J, Suh TS, Kim S (2008) A generalized a priori dose uncertainty model of IMRT delivery. Med Phys 35:982–996

    PubMed  Google Scholar 

  4. Rabaeh KA, Basfar AA, Moussa AA, Msalam RI (2013) Novel radio-chromic solution dosimeter for radiotherapy treatment planning. Physica Med 29:374–378

    Google Scholar 

  5. Seco J, Clasie B, Partridge M (2014) Review on the characteristics of radiation detectors for dosimetry and imaging. Phys Med Biol 59:303–347

    Google Scholar 

  6. Ashrafi S, Eslami B (2016) Investigation of sensitivity and threshold voltage shift of commercial MOSFETs in gamma irradiation. Nucl Sci Tech 27:144

    Google Scholar 

  7. Kron T, Lehmann J, Greer PB (2016) Dosimetry of ionizing radiation in modern radiation oncology. Phys Med Biol 61:167–205

    Google Scholar 

  8. De Deene Y (2002) Gel dosimetry for the dose verification of intensity modulated radiotherapy treatments. Z Med Phys 12(2):77–88

    PubMed  Google Scholar 

  9. Baldock C, De Deene Y, Doran S, Ibbott G, Jirasek A, Lepage M, McAuley KB, Oldham M, Schreiner LJ (2010) Polymer gel dosimetry. Phys Med Biol 55:R1–R63

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Atiq A, Atiq M, Iqbal K, Shamsi QA, Buzdar SA (2018) Evaluation of various dose homogeneity indices for treatment of patients with cervix cancer using intensity modulated radiation therapy technique. J Radiother Pract. https://doi.org/10.1017/S1460396918000249

    Article  Google Scholar 

  11. Eyadeh MM, Rabaeh KA, Hailat TF, Aldweri FM (2018) Evaluation of ferrous Methylthymol blue gelatin gel dosimeters using nuclear magnetic resonance and optical techniques. Radiat Meas 108:26–33

    CAS  Google Scholar 

  12. Rahman ATA, Rosli NF, Zain SM, Zin HM (2018) Recent advances in optical computed tomography (OCT) imaging system for three dimensional (3D) radiotherapy dosimetry. IOP Conf Ser Mater Sci Eng 298(1):12036

    Google Scholar 

  13. Rashidi A, Abtahi S, Saeedzadeh E, Akbari M (2020) A new formulation of polymer gel dosimeter with reduced toxicity: dosimetric characteristics and radiological properties. Z Med Phys 30:185–193

    PubMed  Google Scholar 

  14. Adliene D, Jakstas K, Vaiciunaite N (2014) Application of optical methods for dose evaluation in normoxic polyacrylamide gels irradiated at two different geometries. Nucl Instrum Meth Phys A 741:88–94

    CAS  Google Scholar 

  15. Basfar AA, Moftah B, Rabaeh KA, Almousa A (2015) Novel composition of polymer gel dosimeters based on N-(Hydro-xymethyl) acrylamide for radiation therapy. Radiat Phys Chem 112:112–120

    Google Scholar 

  16. Maeyama T, Ishida Y, Kudo Y, Fukasaku K, Ishikawa KL, Fukunishi N (2018) Polymer gel dosimeter with AQUAJOINT® as hydrogel matrix. Radiat Phys Chem 146:121–125

    CAS  Google Scholar 

  17. Awad SI, Moftah B, Basfer A, Almousa AA, Al Kafi MA, Eyadeh MM, Rabaeh KA (2019) 3-D quality assurance in cyberknife radiotherapy using a novel N-(3-methoxypropyl) acrylamide polymer gel dosimeter and optical CT. Radiat Phys Chem 161:34–41

    CAS  Google Scholar 

  18. Hillbrand M, Landry G, Ebert S, Dedes G, Pappas E, Kalaitzakis G, Kurz C, Würl M, Englbrecht F, Dietrich O, Makris D, Pappas E, Parodi K (2019) Gel dosimetry for three dimensional proton range measurements in anthropomorphic geometries. Z Med Phys 29(2):162–172

    PubMed  Google Scholar 

  19. Rabaeh KA, Al-Ajaleen MS, Abuzayed MH, Aldweri FM, Eyadeh MM (2019) High dose sensitivity of N-(isobutoxymethyl)acrylamide polymer gel dosimeters with improved monomer solubility using acetone co-solvent. Nucl Instrum Methods Phys Res 442:67–72

    CAS  Google Scholar 

  20. Maryanski MJ, Gore JC, Kennan RP, Schulz RJ (1993) NMR relaxation enhancement in gels polymerized and cross-linked by ionizing radiation: a new approach to 3D dosimetry by MRI. Magn Reson Imaging 11:253–258

    CAS  PubMed  Google Scholar 

  21. Maryanski M, Audet C, Gore JC (1997) Effects of crosslinking and temperature on the dose response of a BANG polymer gel dosimeter. Phys Med Biol 42:303–311

    CAS  PubMed  Google Scholar 

  22. Rabaeh KA, Saion E, Omer M, Shahrim I, Alrahman AA, Hussain M (2008) Enhancements in 3D dosimetry measurement using polymer gel and MRI. Radiat Meas 43(8):1377–1382

    CAS  Google Scholar 

  23. Vandecasteele J, De Deene Y (2013) Evaluation of radiochromic gel dosimetry and polymer gel dosimetry in a clinical dose verification. Phys Med Biol 58(18):6241

    PubMed  Google Scholar 

  24. Vandecasteele J, De Deene Y (2012) On the validity of 3D polymer gel dosimetry: III. MRI-related error sources. Phys Med Biol 58:63–85

    PubMed  Google Scholar 

  25. Ibbott GS, Maryanski MJ, Eastman P, Holcomb SD, Zhang Y, Avison RG, Sanders M, Gore JC (1997) Three-dimensional visualization and measurement of conformal dose distributions using magnetic resonance imaging of BANG polymer gel dosimeters. Int J Radiat Oncol Biol Phys 38:1097–1103

    CAS  PubMed  Google Scholar 

  26. De Deene Y, De Wagter C, Van Duyse B, Derycke S, Mersseman B, De Gersem W, Voet T, Achten E, De Neve W (2000) Validation of MR-based polymer gel dosimetry as a preclinical three-dimensional verification tool in conformal radiotherapy. Magn Reson Med 43:116–125

    PubMed  Google Scholar 

  27. Jaszczak M, Wach R, Maras P, Dudek M, Kozicki M (2018) Substituting gelatine with Pluronic F-127 matrix in 3D polymer gel dosimeters can improve nuclear magnetic resonance, thermal and optical properties. Phys Med Biol. https://doi.org/10.1088/1361-6560/aad9d5

    Article  PubMed  Google Scholar 

  28. Pappas E, Maris T (2020) Polymer gel 3D dosimetry in radiotherapy. Z Med Phys 30(3):171–172

    PubMed  Google Scholar 

  29. El-Khayatt AM (2017) Water equivalence of some 3D dosimeters: a theoretical study based on the effective atomic number and effective fast neutron removal cross section. Nucl Sci Tech 28:170

    Google Scholar 

  30. Rabaeh KA, Basfar AA, Almousa AA, Devic S, Moftah B (2017) New normoxic N- (Hydroxymethyl) acrylamide based polymer gel for 3D dosimetry in radiation therapy. Physica Med 33:121–126

    Google Scholar 

  31. Koeva V, Olding T, Jirasek A, Schreiner L, McAuley K (2009) Preliminary investigation of the NMR, optical and x-ray CT dose–response of polymer gel dosimeters incorporating co solvents to improve dose sensitivity. Phys Med Biol 54:2779

    CAS  PubMed  Google Scholar 

  32. Trapp JV, Partridge M, Hansen VN et al (2004) The use of gel dosimetry for verification of electron and photon treatment plants in carcinoma of the scalp. Phys Med Biol 49:1625–1635

    CAS  PubMed  Google Scholar 

  33. Gopishankar N, Vivekanandhan S, Kale SS, Rath GK, Senthilkumaran S, Thulkar S et al (2012) MAGAT gel and EBT2 film-based dosimetry for evaluating source plugging-based treatment plan in Gamma Knife stereotactic radiosurgery. J Appl Clin Med Phys 13:46–61

    PubMed Central  Google Scholar 

  34. Rabaeh KA, Saion E, Ali M, Shahrim I, Alrahman AA, Hussain M (2008) Rate of elapsed polymerization of hydroxyethylacrylate gel induced by gamma radiation. Nucl Sci Tech 19:218–222

    CAS  Google Scholar 

  35. Pappas E, Maris T, Angelopoulos A, Paparigopoulou M, Sakelliou L, Sandilos P, Voyiatzi S, Vlachos L (1999) A new polymer gel for magnetic resonance imaging (MRI) radiation dosimetry. Phys Med Biol 44(10):2677–2684

    CAS  PubMed  Google Scholar 

  36. Kozicki M, Maras P, Rybka K, Biegański T (2009) VIPARnd - GeVero® tool in planning of TPS scheduled brain tumour radiotherapy. J Phys ConfSer 164:012061

    Google Scholar 

  37. Kozicki M, Berg A, Maras P, Jaszczak M, Dudek M (2020) Clinical radiotherapy application of N-vinylpyrrolidone-containing 3D polymer gel dosimeters with remote external MR-reading. Physica Med 69:134–146

    Google Scholar 

  38. Mattea F, Chacón D, Vedelago J, Valente M, Strumia MC (2015) Polymer gel dosimeter based on itaconic acid. Appl Radiat Isot 105:98–104

    CAS  PubMed  Google Scholar 

  39. Farhood B, Abtahi SM, Geraily G, Ghorbani M, Mahdavi SR, Zahmatkesh MH (2018) Dosimetric characteristics of PASSAG as a new polymer gel dosimeter with negligible toxicity. Radiat Phys Chem 147:91–100

    CAS  Google Scholar 

  40. Moftah B, Basfar A, Almousa A, Al-Kafi A, Rabaeh K (2020) Novel 3D polymer gel dosimeters based on N-(3-Methoxypropyl)acrylamide (NMPAGAT) for quality assurance in radiation oncology. Radiat Measur 135:106372

    CAS  Google Scholar 

  41. Hayashi SI, Fujiwara F, Usui S, Tominaga T (2012) Effect of inorganic salt on the dose sensitivity of polymer gel dosimeter. Radiat Phys Chem 81:884–888

    CAS  Google Scholar 

  42. Hayashi SI, Kawamura H, Usui S, Tominaga T (2013) Comparison of the influence of inorganic salts on the NMR dose sensitivity of polyacrylamide-based gel dosimeter. J Phys Conf Ser 444(1):6–10

    Google Scholar 

  43. Hayashi SI, Kawamura H, Usui S, Tominaga T (2018) Influence of magnesium chloride on the dose–response of polyacrylamide-type gel dosimeters. Radiol Phys Technol 11:375–381

    PubMed  Google Scholar 

  44. Ono K, Fujimoto S, Hayashi S et al (2014) SU-E-T-105: development of 3D dose verification system for volumetric modulated arc therapy using improved polyacrylamide-based gel dosimeter. Med Phys 41(6Part12):246–246

    Google Scholar 

  45. Ono K, Fujimoto S, Hayashi S et al (2015) SU-E-T-318: dosimetric evaluation of ArcCHECK and 3DVH system using customized polymer gel dosimeter. Med Phys 42(6Part17):3406–3406

    Google Scholar 

  46. Ono K, Fujimoto S, Hayashi S et al (2016) SU-G-BRB-17: dosimetric evaluation of the respiratory interplay effect during VMAT delivery using IPAGAT polymer gel dosimeter. Med Phys 43(6Part24):3634–3635

    Google Scholar 

  47. Chacón D, Strumia M, Valente M, Mattea F (2018) Effect of inorganic salts and matrix crosslinking on the dose response of polymer gel dosimeters based on acrylamide. Radiat Meas 117:7–18

    Google Scholar 

  48. Al-jarrah A, Abdul Rahman A, Shahrim I, Razak N, Ababneh B, Tousi E (2016) Effect of inorganic salts and glucose additives on dose–response, melting point and mass density of genipin gel dosimeters. Physica Med 32:36–41

    CAS  Google Scholar 

  49. Rabaeh KA, Basfar AA, Almousa AA, Devic S, Moftah B (2017) New normoxic N-(Hydroxymethyl)acrylamide based polymer gel for 3D dosimetry in radiation therapy. Physica Med 35:121–126

    Google Scholar 

  50. Rabaeh KA, Saion E, Ali M, Shahrim I, Alrahman AA, Hussain M (2008) Enhancements in 3D dosimetry measurement using polymer gel and MRI. Radiat Meas 43:1377–1382

    CAS  Google Scholar 

  51. Basfar A, Moftah B, Rabaeh K, Almousa A (2016) Polymerizable composition method of making the composition and its use in a dosimeter. Eur Patent Office (EPO) 2:803–682

    Google Scholar 

  52. Rabaeh KA, Issra’me H, Oglat AA, Eyadeh MM, Ala’j AQ, Aldweri FM, Awad SI (2021) Polymer gel containing N N′-methylene-bis-acrylamide (BIS) as a single monomer for radiotherapy dosimetry. Radiat Phys Chem 187:109522

    CAS  Google Scholar 

  53. Rabaeh KA, Salman NMB, Aldweri FM, Saleh HH, Eyadeh MM, Awad SI, Oglat AA (2021) Substantial influence of magnesium chloride inorganic salt (MgCl2) on the polymer dosimeter containing N-(Hydroxymethyl) acrylamide for radiation therapy. Result Phys 22:103862

    Google Scholar 

  54. Rabaeh KA, Issra’me H, Eyadeh MM, Aldweri FM, Awad SI, Oglat AA, Shatnawi MT (2021) Improved performance of N-(Hydroxymethyl) acrylamide gel dosimeter using potassium chloride for radiotherapy. Radiat Meas 142:106542

    CAS  Google Scholar 

  55. Chacon D, Strumia M, Valente M, Mattea F (2018) Effect of inorganic salts and matrix crosslinking on the dose response of polymer gel dosimeters based on acrylamide. Radiat Meas 117:7–18

    CAS  Google Scholar 

  56. Maryanski MJ, Schulz RJ, Ibbott GS, Gatenby JC, Xie J, Horton D, Gore JC (1994) Magnetic resonance imaging of radiation dose distributions using a polymer-gel dosimeter. Phys Med Biol 39:1437–1455

    CAS  PubMed  Google Scholar 

  57. Kitayama T, Hatada K (2004) NMR spectroscopy of polymers. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  58. ASTM. Standard guide for performance characterization of dosimeters and dosimetry systems for use in radiation processing. ASTM E2701–09.

Download references

Acknowledgements

This work was supported the Deanship of Research and Graduate Studies at Yarmouk University, Irbid, Jordan (Grant No. 3/2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Molham M. Eyadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eyadeh, M.M., Smadi, S.A., Rabaeh, K.A. et al. Effect of lithium chloride inorganic salt on the performance of N-(Hydroxymethyl)acrylamide polymer-gel dosimeter in radiation therapy. J Radioanal Nucl Chem 330, 1255–1261 (2021). https://doi.org/10.1007/s10967-021-08036-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-08036-9

Keywords

Navigation