Skip to main content
Log in

Purification and radioiodination of 2, 4 di-tertiary- butyl phenol extracted from Lactococcus lactis subsp. lactis CAU: 3138-GM2 and its application on myeloma cells

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The goal of the present study was oriented to extraction of a bioactive compound 2,4-di-tertiary-butyl phenol (2,4-DTBP) from Lactococcus lactis subsp. lactis CAU: 3138-GM2 of goat milk origin (accession no. MF354327.1). The 2,4-DTBP was extracted by methanol: chloroform. Radioiodination of 2,4-DTBP using Na125I and chloramine -T was carried out. Effect of radiolabeled tracer and non-radiolabeled of 2,4-DTBP on the inhibition of growth myeloma cells were evaluated. The bioactivity of 2,4-DTBP was tested against Staphylococcus aureus MRSA ATCC 43300, Listeria monocytogenes ATCC 19116, Pseudomonas aeruginosa MTCC 1934, and Escherichia coli MTCC 1610, Clostridium bifermentans MTCC 11273 and Candida albicans MTCC 183.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

All data underlying the results are available as part of the article and no additional source data are required.

References

  1. Nauts HC, McLaren JR (1990) Coley’s toxins the first century. Adv Exp Med Biol 267:483–500

    Article  CAS  Google Scholar 

  2. HoptionCann SA, van Netten JP, van Netten C (2003) Dr. William Coley and tumour regression: a place in history or in the future. Postgrad Med J 79:672–680

    CAS  Google Scholar 

  3. Khan AA (2012) Bacteria and cancer. Springer, New York. https://doi.org/10.1007/978-94-007-2585-0

    Article  Google Scholar 

  4. Belghit S, Driche EH, Bijani C, Zitouni A, Sabaou N, Badji B, Mathieu F (2016) Activity of 2, 4-Di-tert-butylphenol produced by a strain of Streptomyces mutabilis isolated from a Saharan soil against Candida albicans and other pathogenic fungi. Journal de mycologie medicale. 26(2):160–169

    Article  CAS  Google Scholar 

  5. Song AA-L, In LLA, Lim SHE et al (2017) A review on Lactococcuslactis: from food to factory. Microb Cell Fact 16:55. https://doi.org/10.1186/s12934-017-0669-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Varsha KK, Devendra L, Shilpa G, Priya S, Pandey A, Nampoothiri KM (2015) 2,4-Di-tert-butyl phenol as the antifungal, antioxidant bioactive purified from a newly isolated Lactococcus sp. Int J Food Microbiol 211:44–50. https://doi.org/10.1016/j.ijfoodmicro.2015.06.025

    Article  CAS  PubMed  Google Scholar 

  7. Watson RR, Preedy VR, Zibadi S (2018) Polyphenols: mechanisms of action in human health and disease (vol 2), 2nd ed., Academic press

  8. Hunter WM (1971) Radioimmunoassay method, In: K.E. Kirkham and W.M Hunter, (eds) Edinburgh, Churchill Livigstone

  9. SallamKh M, El-Bayoumy ASA, Mehany NL (2016) Development of solid phaseimmunoradiometric assay fordetermination of carcinoembryonic antigenas a tumor marker. J Radioanal Nucl Chem 307:1375–1383. https://doi.org/10.1007/s10967-015-4602-7

    Article  CAS  Google Scholar 

  10. El-Kolaly MT, Mehany NL, Ayyoub SM, Hassan SEM (2005) Solid phase radioimmunoassay for measuring serum triiodothy-ronine and thyroxin using different preparation of their labeledhormones. Arab J Nucl Sci Appl 38(3):241–254

    Google Scholar 

  11. Zhang DH (2018) Volatiles analysis of several nitrogen-fixing Cyanobacteria isolated from rice fields using gas chromatography-mass spectrometry. J Anhui Agric Sci 46:145–148

    CAS  Google Scholar 

  12. Sang MK, Kim KD (2012) The volatile-producing Flavobacteriumjohnsoniae strain GSE09 shows biocontrol activity against Phytophthoracapsici in pepper. J Appl Microb 113:383–398. https://doi.org/10.1111/j.1365-2672.2012.05330.x

    Article  CAS  Google Scholar 

  13. Padmavathi AR, Abinaya B, Pandian SK (2014) Phenol, 2,4-bis(1,1-dimethylethyl) of marine bacterial origin inhibits quorum sensing mediated biofilm formation in the uropathogenSerratiamarcescens. Biofouling 30(9):1111–1122. https://doi.org/10.1080/08927014.2014.972386

    Article  CAS  PubMed  Google Scholar 

  14. Gong A-D, Li HP, Shen L, Zhang JB, Wu AB, He WJ, Yuan QS (2015) The Shewanella algae strain YM8 produces volatiles with strong inhibition activity against Aspergillus pathogens and aflatoxins. Front Microbiol 6:1091. https://doi.org/10.3389/fmicb.2015.01091

    Article  PubMed  PubMed Central  Google Scholar 

  15. Akshatha JV, Prakash HS, Nalini MS (2016) Actinomyceteendophytes from the ethno medicinal plants of Southern India: antioxidant activity and characterization studies. J Biol Act Prod Nat 6:166–172. https://doi.org/10.1080/22311866.2016.1191971

    Article  CAS  Google Scholar 

  16. Viszwapriya D, Prithika U, Deebika S, Balamurugan K, Pandian SK (2016) In vitro and in vivo antibiofilm potential of 2,4-di-tert-butyl phenol from seaweed surface associated bacterium Bacillus subtilis against group A streptococcus. Microbiol Res 191:19–31. https://doi.org/10.1016/j.micres.2016.05.010

    Article  CAS  PubMed  Google Scholar 

  17. Aissaoui N, Mahjoubi M, Nas F, Mghirbi O, Arab M, Souissi Y, Hoceini A et al (2019) Antibacterial potential of 2, 4-di-tert-butylphenol and calixarene-based prodrugs from thermophilic Bacillus licheniformis isolated in Algerian hot spring. Geo microbiol 36:53–62. https://doi.org/10.1080/01490451.2018.1503377

    Article  CAS  Google Scholar 

  18. Pingali SR, Haddad RY, Saad A (2012) Current concepts of clinical management of multiple myeloma. Dis Mon 58(4):195–207. https://doi.org/10.1016/j.disamonth.2012.01.006

    Article  PubMed  Google Scholar 

  19. Siegel R, Ma J, Zou Z, Jemal A (2014) Cancer statistics, 2014. CA Cancer J Clin 64(1):9–29. https://doi.org/10.3322/caac.21208

    Article  PubMed  Google Scholar 

  20. Naymagon L, Abdul-Hay M (2016) Novel agents in the treatment of multiple myeloma: a review about the future. J Hematol Oncol 9(1):52. https://doi.org/10.1186/s13045-016-0282-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shehata MG, Abu-Serie MM, El-Aziz MA, El-Sohaimy SA (2019) In vitro assessment of antioxidant, antimicrobial and anticancer properties of lactic acid bacteria. Int J Pharmacol 15(6):651–663. https://doi.org/10.3923/ijp.2019.651.663

    Article  CAS  Google Scholar 

  22. Bultman SJ (2014) Emerging roles of the microbiome in cancer. Carcinogenesis 35(2):249–255. https://doi.org/10.1093/carcin/bgt392

    Article  CAS  PubMed  Google Scholar 

  23. Marchesi JR, Adams DH, Fava F, Hermes GD, Hirschfield GM, Hold G, Quraishi et al (2016) The gut microbiota and host health: a new clinical frontier. Gut 65(2):330–339. https://doi.org/10.1136/gutjnl-2015-309990

    Article  PubMed  Google Scholar 

  24. Liu Z, Qin H, Yang Z, Xia Y, Liu W, Yang J, Jiang Y, Zhang H (2011) Randomised clinical trial: the effects of perioperative probiotic treatment on barrier function and post-operative infectious complications in colorectal cancer surgery: a double-blind study. Aliment Pharmacol Ther 33:50–63. https://doi.org/10.1111/j.1365-2036.2010.04492.x

    Article  CAS  PubMed  Google Scholar 

  25. Liu ZH, Huang MJ, Zhang XW, Wang L, Huang NQ, Peng H, Lan P et al (2013) The effects of perioperative probiotic treatment on serum zonulin concentration and subsequent postoperative infectious complications after colorectal cancer surgery: a double-center and double-blind randomized clinical trial. Am J Clin Nutr 97(1):117–126. https://doi.org/10.3945/ajcn.112.040949

    Article  CAS  PubMed  Google Scholar 

  26. Pontes DS, de Azevedo MS, Chatel JM, Langella P, Azevedo V, Miyoshi A (2011) Lactococcuslactis as a live vector: Heterologous protein production and DNA delivery systems. Protein Expr Purif 79(2):165–175. https://doi.org/10.1016/j.pep.2011.06.005

    Article  CAS  PubMed  Google Scholar 

  27. Rangel-Colmenero BR, Gomez-Gutierrez JG, Villatoro-Hernandez J, Zavala-Flores LM, Quistian-Martinez D, Rojas-Martinez A, Arce-Mendoza AY (2014) Enhancement of Ad-CRT/E7-mediated antitumor effect by preimmunization with L lactis expressing HPV-16 E7. Viral Immunol 27(9):463–467. https://doi.org/10.1089/vim.2014.0055

    Article  CAS  PubMed  Google Scholar 

  28. De Man JC, Rogosa M, Sharpe ME (1960) A medium for the cultivation of lactobacilli. J Appl Bacteriol 23:130–135. https://doi.org/10.1111/j.1365-2672.1960.tb00188.x

    Article  Google Scholar 

  29. Sandven P, Lassen J (1999) Importance of selective media for recovery of yeasts from clinical specimens. J Clin Microbiol 37(11):3731–3732. https://doi.org/10.1128/JCM.37.11.3731-3732.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mueller, Hinton JH (1941) J. Muller Hinton Agar. . J Proc Soc Exp Bio Med 48:330–333

    Article  CAS  Google Scholar 

  31. Chapmen RS (1998) Nuclear medicine and related radionuclide application in developing countries. 2nded. p.17, Atomic energy agency, Vinna

  32. Kavanagh F (1972) Analytical microbiology, vol 2. Academic Press Inc, New York

    Google Scholar 

  33. Martinez RCR, Wachsman M, Torres NI, LeBlanc JG, Todorov SD, Franco BDGDM (2013) Biochemical, antimicrobial and molecular characterization of a non cytotoxicbacteriocin produced by Lactobacillus plantarum ST71KS. Food Microbiol 34(2):376–381. https://doi.org/10.1016/j.fm.2013.01.011

    Article  CAS  PubMed  Google Scholar 

  34. Coskun O (2016) Separation techniques: chromatography. Northern Clinics of Istanbul 3(2):156–160. https://doi.org/10.14744/nci.2016.32757

    Article  PubMed  PubMed Central  Google Scholar 

  35. Girija S, Duraipandiyan V, Kuppusamy PS, Gajendran H, Rajagopal R (2014) Chromatographic characterization and GC-MS evaluation of the bioactive constituents with antimicrobial potential from the pigmented ink of Loligo duvauceli. Int schol Res Notices 3:1–7. https://doi.org/10.1155/2014/820745

    Article  Google Scholar 

  36. Balouiri M, Sadiki M, Ibnsouda SK (2016) Methods for in vitro evaluating antimicrobial activity: -a review. J Pharm Anal 6(2):71–79

    Article  Google Scholar 

  37. Hunter WM, Greenwood FC (1962) Preparation of iodine-131labelled human growth hormone of high specific activity. Nature 194:495–496

    Article  CAS  Google Scholar 

  38. Graham SB (1996) The protein protocols handbook, The Chloramine T method for radiolabeling protein, 2nd edn. Humana Press Inc., Totowa

    Google Scholar 

  39. Shammas MA, Reis RJS, Li C, Koley H, Hurley LH, Anderson KC, Munshi NC (2004) Telomerase inhibition and cell growth arrest after telomestatin treatment in multiple myeloma. Clin Cancer Res 10(2):770–776. https://doi.org/10.1158/1078-0432.CCR-0793-03

    Article  CAS  PubMed  Google Scholar 

  40. Kumar P, Nagarajan A, Uchil PD (2018) Analysis of cell viability by the MTT assay. Cold Spring Harb Protoc. https://doi.org/10.1101/pdb.prot095505

    Article  PubMed  Google Scholar 

  41. Zhang L, Wang L, Yi L, Wang X, Zhang Y, Liu J, Guo X (2016) A novel antimicrobial substance produced by Lactobacillus rhamnousLS8. Food Control 73:754–760. https://doi.org/10.1016/j.foodcont.2016.09.028

    Article  CAS  Google Scholar 

  42. Gupta R, Srivastava S (2014) Antifungal effect of antimicrobial peptides (AMPs LR14) derived from Lactobacillus plantarum strain LR/14 and their applications in prevention of grain spoilage. Food Microbiol 42:1–7. https://doi.org/10.1016/j.fm.2014.02.00551

    Article  CAS  PubMed  Google Scholar 

  43. Perin LM, Nero LA (2014) Antagonistic lactic acid bacteria isolated from goat milk and identification of a novel nisin variant Lactococcuslactis. BMC Microbiol 14:36

    Article  Google Scholar 

  44. Furtado DN, Todorov ST, Landgraf M, Destro MT, Franco BDGM (2014) Bacteriocinogenic Lactococcuslactis subsp. lactis DF04Mi isolated from goat milk: Evaluation of the probiotic potential. Braz J Microbiol 45(3):1047–1054. https://doi.org/10.1590/s1517-83822014000300038

    Article  PubMed  PubMed Central  Google Scholar 

  45. Eloff JN (1998) Which extractant should be used for the screening and isolation of antimicrobial components from plants? J Ethno pharmacol 60:1–8

    Article  CAS  Google Scholar 

  46. Dharni S, Maurya A, Samad A, Srivastava SK, Sharma A, Patra DD (2014) Purification, characterization, and in vitro activity of 2,4-di-tert-butyl phenol from Pseudomonas monteilii PsF84: Conformational and molecular docking studies. J Agric Food Chem 62:6138–6146. https://doi.org/10.1021/jf5001138

    Article  CAS  PubMed  Google Scholar 

  47. Zhao F, Wang P, Lucardi RD, Su Z, Li S (2020) Natural sources and bioactivities of 2,4-di-tert-Butyl phenol and its analogs. Toxins 12:35. https://doi.org/10.3390/toxins12010035

    Article  CAS  PubMed Central  Google Scholar 

  48. Malek SN, Shin SK, Wahab NA, Yaacob H (2009) Cytotoxic components of Pereskiableo (Kunth) DC. (Cactaceae) leaves. Molecules 14(5):1713–1724. https://doi.org/10.3390/molecules14051713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sallam KM, El-Bayoumy ASA, Farouk N (2017) Radiolabeling of melatonin using different oxidizing agents for immunoassay purpose. Radiochemistry 59(6):639–644. https://doi.org/10.1134/S10663622170600133

    Article  CAS  Google Scholar 

  50. Mehany NL, El Kolaly MT, Ayyoub SM, Hassan SEM (2005) Immunoradiometric assay for the in vitro determination of thyroid stimulating hormone in human serum and plasma using solid phase anti-TSH cellulose particles. J Radioanal Nucl Chem 265(1):61–71

    Article  CAS  Google Scholar 

  51. Choi SJ, Kim JK, Kim HK, Harris K, Kim C-J, Park GG, Park C-S, Shin D-H (2013) 2,4-Di-tert-butyl phenol from sweet potato protects against oxidative stress in PC12 cells and in mice. J Med Food 16:977–983. https://doi.org/10.1089/jmf.2012.2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Song YW, Lim Y, Cho SK (2018) 2, 4αDi-tertbutylphenol, a potential inhibitor, induce senescence and mitotic catastrophe in human gastric adenocarcinoma AGS cells BiochimicaetBiophysicaActa (BBA). Molecul Cell Res 1865(5):675–683. https://doi.org/10.1016/j.bbamcr.2018.02.003

    Article  CAS  Google Scholar 

  53. Toi M, Hirota S, Tomotaki A, Sato N, Hozumi Y, Anan K, Nagashima T, Tokuda Y (2013) Probiotic beverage with soy isoflavone consumption for breast cancer prevention: a case-control study. Curr Nutr Food Sci 9(3):194–200. https://doi.org/10.2174/15734013113099990001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Naito S, Koga H, Yamaguchi A, Fujimoto N, Hasui Y, Kuramoto H, Iguchi A (2008) Prevention of recurrence with epirubicin and Lactobacillus casei after transurethral resection of bladder cancer. J Urol 179(2):485–490. https://doi.org/10.1016/j.juro.2007.09.031

    Article  CAS  PubMed  Google Scholar 

  55. Bahey-El-Din M, Gahan CG, Griffin BT (2010) Lactococcuslactis as a cell factory for delivery of therapeutic proteins. Curr Gene Ther 10(1):34–45. https://doi.org/10.2174/156652310790945557

    Article  CAS  PubMed  Google Scholar 

  56. Garza-Morales RE, Rendon B, Malik MT, Garza-Cabrales JE, Aucouturier A, Bermúdez-Humarán LG, McMasters KM (2020) Targeting Melanoma Hypoxia with the food-grade lactic acid bacterium LactococcusLactis. Cancers 12:438. https://doi.org/10.3390/cancers12020438

    Article  CAS  PubMed Central  Google Scholar 

  57. Carswell EA, Old LJ, Kassel RL et al (1975) An endotoxin induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci USA 72:3666–3670

    Article  CAS  Google Scholar 

  58. Bach C-A, Wagner I, Lachiver X, Baujat B, Chabolle F (2012) Botulinum toxin in the treatment of post-radiosurgical neck contracture in head and neck cancer: a novel approach. Eur Ann Otorhinolaryngol Head Neck Dis 129(1):6–10. https://doi.org/10.1016/j.anorl.2011.07.002

    Article  PubMed  Google Scholar 

  59. Frankel AE, Rossi P, Kuzel TM (2002) Diphtheria fusion protein therapy of chemoresistantmalignancies. Curr Cancer Drug Targets 2:19–36. https://doi.org/10.2174/1568009023333944

    Article  CAS  PubMed  Google Scholar 

  60. Patyar S, Prakash A, Medhi B (2012) Bacteria as a therapeutic approach in cancer therapy, Ch.8. In: Khan AA (ed.) Bacteria and cancer. Springer Dordrecht. Doi: https://doi.org/10.1007/978-94-007-2585-0

Download references

Acknowledgements

Authors acknowledge the immense financially support provided by Hot Labs Center, Atomic Energy Authority, Cairo, Egypt

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kh.M. Sallam.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest regarding the publication of this paper.

Ethical approval

This manuscript does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sallam, K., Nasr, Z.S., El-Shershaby, H.M. et al. Purification and radioiodination of 2, 4 di-tertiary- butyl phenol extracted from Lactococcus lactis subsp. lactis CAU: 3138-GM2 and its application on myeloma cells. J Radioanal Nucl Chem 329, 717–730 (2021). https://doi.org/10.1007/s10967-021-07838-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07838-1

Keywords

Navigation