Skip to main content
Log in

Assessment of different hazard indices around coal-fired power plants in Turkey

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

This paper presents the radiological and heavy metal risk assessment to evaluate the impact of coal-fired power plants on humans and the environment in Turkey. Radiological evaluation was performed in terrestrial and freshwater ecosystems. For the freshwater reference organisms, total dose rates for insect larvae, mollusc bivalve, and gastropod, and zooplankton show radiological risk. Non-carcinogenic and carcinogenic risks, contamination factor, ecological risk, and geoaccumulation index for heavy metal risk assessment are the aspects of interest. Long-term exposure of children to heavy metals in coal may cause non-carcinogenic harmful effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. International Atomic Energy Agency (2019) Energy, Electricity and Nuclear Power Estimates for the Period up to 2050

  2. International Energy Agency (2019) Key World Energy Statistics 2019

  3. Todorović N, Bikit I, Vesković M, Mrdja D, Forkapić S, Hansman J, Nikolov J, Bikit K, Krmar M (2015) Radioactivity in fertilizers and radiological impact. J Radioanal Nucl Chem 303:2505–2509

    Google Scholar 

  4. UNSCEAR (2011) Volume II: (Effects), Annex E: Effects of ionizing radiation on non-human biota

  5. USDOE (2002) A graded approach for evaluating radiation doses to aquatic and terrestrial Biota

  6. Brown JE, Alfonso B, Avila R, Beresford NA, Copplestone D, Pröhl G, Ulanovsky A (2008) The ERICA tool. J Environ Radioact 99:1371–1383

    Article  CAS  PubMed  Google Scholar 

  7. Strand P, Beresford N, Copplestone D, Godoy J, Jianguo L, Saxen R, Yankovich T, Brown J (2009) ICRP, 2009. Environmental protection: transfer parameters for reference animals and plants. ICRP Publ 114. Ann ICRP 39:47–64

    Google Scholar 

  8. IAEA (2014) Handbook of Parameter Values for the Prediction of Radionuclide Transfer to Wildlife

  9. D-ERICA: An Integrated approach to the assessment and management of environmental risks from ionising radiation. https://wiki.ceh.ac.uk/download/attachments/115017395/D-Erica.pdf. Accessed 27 Feb 2021

  10. Larsson CM (2008) An overview of the ERICA Integrated Approach to the assessment and management of environmental risks from ionising contaminants. J Environ Radioact 99:1364–1370

    Article  CAS  PubMed  Google Scholar 

  11. Brown JE, Alfonso B, Avila R, Beresford NA, Copplestone D, Hosseini A (2016) A new version of the ERICA tool to facilitate impact assessments of radioactivity on wild plants and animals. J Environ Radioact 153:141–148

    Article  CAS  PubMed  Google Scholar 

  12. Konstantinova M, Prokopčiuk N, Gudelis A, Butkus D (2015) Radiological assessment of ionizing radiation impact on the terrestrial non-human biota in lithuania. J Environ Eng Landsc Manag 23:295–301

    Article  Google Scholar 

  13. Vandenhove H, Vives i Batlle J, Sweeck L (2015) Potential radiological impact of the phosphate industry on wildlife. J Environ Radioact 141:14–23

    Article  CAS  PubMed  Google Scholar 

  14. Sotiropoulou M, Florou H, Manolopoulou M (2016) Radioactivity measurements and dose rate calculations using ERICA tool in the terrestrial environment of Greece. Environ Sci Pollut Res 23:10872–10882

    Article  CAS  Google Scholar 

  15. Giwa KW, Osahon OD, Amodu FR, Tahirı TI, Ogunsanwo FO (2018) Radiometric analysis and spatial distribution of radionuclides with-in the terrestrial environment of South-Western Nigeria using ERICA tool. Environ Nanotechnol Monit Manag 10:419–426

    Google Scholar 

  16. Karimullina EM, Mikhailovskaya LN, Antonova EV, Pozolotina VN (2018) Radionuclide uptake and dose assessment of 14 herbaceous species from the east-Ural radioactive trace area using the ERICA Tool. Environ Sci Pollut Res 25:13975–13987

    Article  CAS  Google Scholar 

  17. Manigandan PK, Chandar Shekar B (2018) Soil impact and radiation dose to native plants in forest ecosystem. Agrofor Syst 92:1213–1219

    Article  Google Scholar 

  18. Petrinec B, Sovilj MP, Babić D, Meštrović T, Miklavčić I, Radolić V, Stanić D, Vuković B, Šoštarić M (2018) Assessing the radiological load on the environment in the middle danube river basin on the basis of a study of the kopački rit nature park, croatia. Radiat Environ Biophys 57:285–292

    Article  CAS  PubMed  Google Scholar 

  19. Petrović J, Đorđević M, Dragović R, Gajić B, Dragović S (2018) Assessment of radiation exposure to human and non-human biota due to natural radionuclides in terrestrial environment of Belgrade, the capital of Serbia. Environ Earth Sci 77:1–12

    Article  CAS  Google Scholar 

  20. Rosén K, Lenoir L, Stark K, Vinichuk M, Sundell-Bergman S (2018) Transfer of radionuclides and dose assessment to ants and anthills in a Swedish forest ecosystem. J Environ Radioact 190–191:97–104

    Article  PubMed  CAS  Google Scholar 

  21. Oughton DH, Strømman G, Salbu B (2013) Ecological risk assessment of Central Asian mining sites: application of the ERICA assessment tool. J Environ Radioact 123:90–98

    Article  CAS  PubMed  Google Scholar 

  22. Erenturk S, Haciyakupoglu S, Cotuk Y, Belivermis M, Kilic O, Kocbas F, Oral R, Yusan S, Gur F, Turkozu DA, Camtakan Z (2015) Long-Term Consequences of Enhanced Radioactivity and Conventional Chemical Pollutants for Biota at The Scale of Individuals, Populations and Communities (EANOR), European Union 7.Framework Program ERA.NET-RUS – TÜBİTAK, ERANET-112Y242.

  23. Ćujić M, Dragović S (2018) Assessment of dose rate to terrestrial biota in the area around coal fired power plant applying ERICA tool and RESRAD BIOTA code. J Environ Radioact 188:108–114

    Article  PubMed  CAS  Google Scholar 

  24. Skoko B, Babić D, Marović G, Papić S (2019) Environmental radiological risk assessment of a coal ash and slag disposal site with the use of the ERICA Tool. J Environ Radioact 208–209:106018

    Article  PubMed  CAS  Google Scholar 

  25. Ranjan A, Mandal KK, Kumari P (2020) Impact of coal-fired thermal power plant on the drinking water quality of Anpara, Sonbhadra, Uttar Pradesh, India. Groundw Sustain Dev 11:100395

    Article  Google Scholar 

  26. Li Z, Ma Z, van der Kuijp TJ, Yuan Z, Huang L (2014) A review of soil heavy metal pollution from mines in China: pollution and health risk assessment. Sci Total Environ 468–469:843–853

    Article  PubMed  CAS  Google Scholar 

  27. Milenkovic B, Stajic JM, Gulan L, Zeremski T, Nikezic D (2015) Radioactivity levels and heavy metals in the urban soil of Central Serbia. Environ Sci Pollut Res 22:16732–16741. https://doi.org/10.1007/s11356-015-4869-9

    Article  CAS  Google Scholar 

  28. Antoszczyszyn T, Michalska A (2016) The potential risk of environmental contamination by mercury contained in Polish coal mining waste. J Sustain Min 15:191–196

    Article  Google Scholar 

  29. Cheng S, Liu G, Zhou C, Sun R (2018) Chemical speciation and risk assessment of cadmium in soils around a typical coal mining area of China. Ecotoxicol Environ Saf 160:67–74

    Article  CAS  PubMed  Google Scholar 

  30. Adewumi AJ, Laniyan TA (2020) Contamination, sources and risk assessments of metals in media from Anka artisanal gold mining area, Northwest Nigeria. Sci Total Environ 718:137235

    Article  CAS  PubMed  Google Scholar 

  31. Barcelos DA, Pontes FVM, da Silva FANG, Castro DC, dos Anjos NOA, Castilhos ZC (2020) Gold mining tailing: Environmental availability of metals and human health risk assessment. J Hazard Mater 397:122721

    Article  CAS  PubMed  Google Scholar 

  32. Gulan L, Valjarevic A, Milenkovic B, Stevanovic V, Milic G, Stajic JM (2018) Environmental radioactivity with respect to geology of some Serbian spas. J Radioanal Nucl Chem 317:571–578

    Article  CAS  Google Scholar 

  33. Weissmannová HD, Mihočová S, Chovanec P, Pavlovský J (2019) Potential ecological risk and human health risk assessment of heavy metal pollution in industrial affected soils by coal mining and metallurgy in Ostrava, Czech Republic. Int J Environ Res Public Health 16(22):4495

    Article  CAS  Google Scholar 

  34. Czech T, Marchewicz A, Sobczyk AT, Krupa A, Jaworek A, Śliwiński Ł, Rosiak D (2020) Heavy metals partitioning in fly ashes between various stages of electrostatic precipitator after combustion of different types of coal. Process Saf Environ Prot 133:18–31

    Article  CAS  Google Scholar 

  35. Schneider L, Rose NL, Lintern A, Sinclair D, Zawadzki A, Holley C, Aquino-López MA, Haberle S (2020) Assessing environmental contamination from metal emission and relevant regulations in major areas of coal mining and electricity generation in Australia. Sci Total Environ 728:137398

    Article  CAS  PubMed  Google Scholar 

  36. Karayigit AI, Gayer RA, Querol X, Onacak T (2000) Contents of major and trace elements in feed coals from Turkish coal-fired power plants. Int J Coal Geol 44:169–184

    Article  CAS  Google Scholar 

  37. Gürdal G, Bozcu M (2011) Petrographic characteristics and depositional environment of Miocene Çan coals, Çanakkale-Turkey. Int J Coal Geol 85:143–160

    Article  CAS  Google Scholar 

  38. Turhan Ş, Arikan IH, Yücel B, Varinlioğlu A, Köse A (2010) Evaluation of the radiological safety aspects of utilization of Turkish coal combustion fly ash in concrete production. Fuel 89:2528–2535

    Article  CAS  Google Scholar 

  39. Palmer CA, Tuncali E, Dennen KO, Coburn TC, Finkelman RB (2004) Characterization of Turkish coals: a nationwide perspective. Int J Coal Geol 60:85–115

    Article  CAS  Google Scholar 

  40. TAEK (2009) Türkiye’deki Çevresel Radyoaktivitenin İzlenmesi, 2007. Ankara (in Turkish with English summary)

  41. TAEK (2010) Türkiye’deki Çevre Radyoaktivitesinin İzlenmesi, 2008. Ankara (in Turkish with English summary)

  42. TAEK (2010) Türkiye’deki Çevre Radyoaktivitesinin İzlenmesi, 2009. Ankara (in Turkish with English summary)

  43. TAEK (2011) Türkiye’deki Çevre Radyoaktivitesinin İzlenmesi, 2010. Ankara (in Turkish with English summary)

  44. TAEK (2013) Türkiye Çevresel Radyoaktivite Atlası. Ankara (in Turkish with English summary)

  45. TAEK (2011) Türkiye’deki Enerji Üretiminde Kullanılan Kömür Yakıtlı Termik Santrallerin ve Denizli Jeotermal Santralinin Ürettiği Tenorm Atıklarının Radyolojik Değerlendirilmesi. Ankara (in Turkish with English summary)

  46. TAEK (2009) Türkiye’deki Kömür Yakıtlı Termik Santrallerden Elde Edilen Ucucu Küllerin İnşaat Sektöründe Kullanılabilirliğinin Radyolojik Açıdan Değerlendirilmesi. Ankara (in Turkish with English summary)

  47. Prlić I, Mostečak A, Mihić MS, Veinović Z, Pavelić L (2017) Radiological risk assessment: An overview of the ERICA integrated approach and the ERICA tool use. Arh Hig Rada Toksikol 68:298–307

    Article  PubMed  Google Scholar 

  48. Rosen MA, Bulucea CA, Mastorakis NE, Bulucea CA, Jeles AC, Brindusa CC (2015) Evaluating the thermal pollution caused by wastewaters discharged from a chain of coal-fired power plants along a river. Sustain 7:5920–5943

    Article  Google Scholar 

  49. Ćujić M, Dragović S, Đorđević M, Dragović R, Gajić B, Miljanić S (2015) Radionuclides in the soil around the largest coal-fired power plant in Serbia: radiological hazard, relationship with soil characteristics and spatial distribution. Environ Sci Pollut Res 22:10317–10330

    Article  CAS  Google Scholar 

  50. Gulan L, Penjišević I, Stajic JM, Milenkovic B, Zeremski T, Stevanović V, Valjarević, (2020) Spa environments in central Serbia: Geothermal potential, radioactivity, heavy metals and PAHs. Chemosphere 242:125171

    Article  CAS  PubMed  Google Scholar 

  51. Filgueiras RA, Silva AX, Ribeiro FCA, Lauria DC, Viglio EP (2020) Baseline, mapping and dose estimation of natural radioactivity in soils of the Brazilian state of Alagoas. Radiat Phys Chem 167:108332

    Article  CAS  Google Scholar 

  52. Leal ALC, Lauria DC, Ribeiro FCA (2020) Natural radionuclide levels and the associated radiological risks in soils from the three mesoregions of Pernambuco state, Brazil. J Radioanal Nucl Chem 324:521–531

    Article  CAS  Google Scholar 

  53. Milenkovic B, Stajic JM, Zeremski T, Strbac S, Stojic DN (2020) Is Kragujevac city still a “hot spot” area, twenty years after the bombing? Chemosphere 245:125610

    Article  CAS  PubMed  Google Scholar 

  54. UNSCEAR (2010) UNSCEAR 2008 Report Vol. I Sources and Effects of Ionizing Radiation

  55. Vaeth M, Pierce DA (1990) Calculating excess lifetime risk in relative risk models. Environ Health Perspect 87:83–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. ICRP (2007) ICRP Publication 103 The 2007 Recommendations of the International Commission on Radiological Protection

  57. UNSCEAR (2010) UNSCEAR 2008 Report to the General Assembly: Annex B Exposures of the Public and Workers from Various Sources of Radiation

  58. EPA (2002) Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites

  59. Chabukdhara M, Nema AK (2013) Heavy metals assessment in urban soil around industrial clusters in Ghaziabad, India: Probabilistic health risk approach. Ecotoxicol Environ Saf 87:57–64

    Article  CAS  PubMed  Google Scholar 

  60. Chen H, Teng Y, Lu S, Wang Y, Wang J (2015) Contamination features and health risk of soil heavy metals in China. Sci Total Environ 512–513:143–153

    Article  PubMed  CAS  Google Scholar 

  61. Wu S, Peng S, Zhang X, Wu D, Luo W, Zhang T, Zhou S, Yang G, Wan H, Wu L (2015) Levels and health risk assessments of heavy metals in urban soils in Dongguan, China. J Geochemical Explor 148:71–78

    Article  CAS  Google Scholar 

  62. Abrahim GMSS, Parker RJ (2008) Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environ Monit Assess 136:227–238

    Article  CAS  PubMed  Google Scholar 

  63. Karageorgis AP, Katsanevakis S, Kaberi H (2009) Use of enrichment factors for the assessment of heavy metal contamination in the sediments of Koumoundourou Lake, Greece. Water Air Soil Pollut 204:243–258

    Article  CAS  Google Scholar 

  64. Haciyakupoglu S, Esen AN, Erenturk S, Okka M, Genceli M, Mercimek M, Genceli E, Yusan S, Gur Filiz F, Olgen K, Camtakan Z, Kiziltas S, Tanbay T (2015) Determining distribution of heavy metal pollution in terms of ecological risk levels in soil of industrially intensive areas around Istanbul. Toxicol Environ Chem 97:62–75

    Article  CAS  Google Scholar 

  65. Yang Y, Chen F, Zhang L, Liu J, Wu S, Kang M (2012) Comprehensive assessment of heavy metal contamination in sediment of the Pearl River Estuary and adjacent shelf. Mar Pollut Bull 64:1947–1955

    Article  CAS  PubMed  Google Scholar 

  66. Brady JP, Ayoko GA, Martens WN, Goonetilleke A (2014) Enrichment, distribution and sources of heavy metals in the sediments of Deception Bay, Queensland, Australia. Mar Pollut Bull 81:248–255

    Article  CAS  PubMed  Google Scholar 

  67. Lim D, il, Choi JW, Shin HH, Jeong DH, Jung HS, (2013) Toxicological impact assessment of heavy metal contamination on macrobenthic communities in southern coastal sediments of Korea. Mar Pollut Bull 73:362–368

    Article  CAS  PubMed  Google Scholar 

  68. Hakanson L (1980) An ecological risk index for aquatic pollution control.a sedimentological approach. Water Res 14:975–1001

    Article  Google Scholar 

  69. Chai M, Shi F, Li R, Shen X (2014) Heavy metal contamination and ecological risk in Spartina alterniflora marsh in intertidal sediments of Bohai Bay, China. Mar Pollut Bull 84:115–124

    Article  CAS  PubMed  Google Scholar 

  70. Nazeer S, Hashmi MZ, Malik RN (2014) Heavy metals distribution, risk assessment and water quality characterization by water quality index of the River Soan, Pakistan. Ecol Indic 43:262–270

    Article  CAS  Google Scholar 

  71. Analysis of radioactive contaminants in by-products from coal-fired power plant operations.https://nepis.epa.gov/Exe/ZyPDF.cgi/9101A5Q4.PDF?Dockey=9101A5Q4.PDF. Accessed 27 Feb 2021

  72. UNSCEAR (1982) Ionizing Radiation: Sources and Biological Effects. United Nations, New York

    Google Scholar 

  73. Lu X, Jia X, Wang F (2006) Natural radioactivity of coal and its by-products in the Baoji coal-fired power plant, China. Curr Sci 91:1508–1511

    CAS  Google Scholar 

  74. Lu X, Zhao C, Chen C, Liu W (2012) Radioactivity level of soil around Baqiao coal-fired power plant in China. Radiat Phys Chem 81:1827–1832

    Article  CAS  Google Scholar 

  75. Bhangare RC, Tiwari M, Ajmal PY, Sahu SK, Pandit GG (2014) Distribution of natural radioactivity in coal and combustion residues of thermal power plants. J Radioanal Nucl Chem 300:17–22

    Article  CAS  Google Scholar 

  76. Lauer NE, Hower JC, Hsu-Kim H, Taggart RK, Vengosh A (2015) Naturally occurring radioactive materials in coals and coal combustion residuals in the United States. Environ Sci Technol 49:11227–11233

    Article  CAS  PubMed  Google Scholar 

  77. Wang X, Feng Q, Sun R, Liu G (2015) Radioactivity of natural nuclides (40K,238U,232Th,226Ra) in coals from eastern Yunnan, China. Minerals 5:637–646

    Article  CAS  Google Scholar 

  78. The Risk Assessment Information System. https://rais.ornl.gov/. Accessed 27 Feb 2021

  79. Dai S, Ren D, Chou CL, Finkelman RB, Seredin VV, Zhou Y (2012) Geochemistry of trace elements in Chinese coals: a review of abundances, genetic types, impacts on human health, and industrial utilization. Int J Coal Geol 94:3–21

    Article  CAS  Google Scholar 

  80. Saikia BK, Goswamee RL, Baruah BP, Baruah RK (2009) Occurrence of some hazardous metals in Indian coals. Coke Chem 52:54–59

    Article  Google Scholar 

  81. Finkelman RB (1993) Trace and Minor Elements in Coal. Org Geochem 52(2):593–607

    Article  Google Scholar 

  82. Ketris MP, Yudovich YE (2009) Estimations of clarkes for carbonaceous biolithes: world averages for trace element contents in black shales and coals. Int J Coal Geol 78:135–148

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayse Nur Esen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esen, A.N., Haciyakupoglu, S. & Erenturk, S.A. Assessment of different hazard indices around coal-fired power plants in Turkey. J Radioanal Nucl Chem 329, 601–620 (2021). https://doi.org/10.1007/s10967-021-07835-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07835-4

Keywords

Navigation