Skip to main content
Log in

Positron annihilation lifetime spectroscopy of advanced reduced-activation alloy (ARAA) in cold‐worked conditions

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The defects due to cold-rolling deformation in the advanced reduced-activation alloy (ARAA) have been analyzed using positron annihilation lifetime spectroscopy (PALS). Four different cold-rolled conditions up to 35% reduction from 0% have been used in this study. The mean lifetime of the positron at the cold-worked ARAA samples increased over that of the as-normalized sample, which was comparative to the increase in the amount of grain boundaries in the electron backscatter diffraction images. PALS could determine microstructural change in defects of the cold-rolled ARAA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kumar R, Singh P, Gupta SK, Gupta R, Jaiswal MK, Prasad M, Roychowdhury A, Chauhan RP, Das D (2017) Radiation induced nano-scale free volume modifications in amorphous polymeric material: a study using positron annihilation lifetime spectroscopy. J Radioanal Nucl Chem 314(3):1659–1666

    Article  CAS  Google Scholar 

  2. Ono R, Togimitsu T, Sato W (2015) Evaluation of vacancy-type defects in ZnO by the positron annihilation lifetime spectroscopy. J Radioanal Nucl Chem 303(2):1223–1226

    Article  CAS  Google Scholar 

  3. Tuomisto F, Makkonen I (2013) Defect identification in semiconductors with positron annihilation: experiment and theory. Rev Mod Phys 85(4):1583

    Article  CAS  Google Scholar 

  4. Dlubek G, Saarinen K (1996) A positron lifetime and Doppler-broadening study of positron states and free volume in polyethylene. J Radioanal Nucl Chem 210(2):495–503

    Article  CAS  Google Scholar 

  5. Ohkubo H, Tang Z, Nagai Y, Hasegawa M, Tawara T, Kiritani M (2003) Positron annihilation study of vacancy-type defects in high-speed deformed Ni, Cu and Fe. Mater Sci Eng A 350(1–2):95–101

    Article  Google Scholar 

  6. Rubel M (2019) Fusion neutrons: tritium breeding and impact on wall materials and components of diagnostic systems. J Fusion Energy 38(3):315–329

    Article  CAS  Google Scholar 

  7. Philipps V, Wienhold P, Kirschner A, Rubel M (2002) Erosion and redeposition of wall material in controlled fusion devices. Vacuum 67(3–4):399–408

    Article  CAS  Google Scholar 

  8. Fernandez P, Lancha AM, Lapena J, Serrano M, Hernández-Mayoral M (2002) Metallurgical properties of reduced activation martensitic steel Eurofer’97 in the as-received condition and after thermal ageing. J Nucl Mater 307:495–499

    Article  Google Scholar 

  9. Bartošová I, Čížek J, Lukáč F, Slugeň V (2014) Vickers hardness and positron annihilation study of Eurofer97 and ODS Eurofer. Acta Phys Pol A 125(3):702–705

    Article  Google Scholar 

  10. Babu SH, Amarendra G, Rajaraman R, Sundar CS (2013) Microstructural characterization of ferritic/martensitic steels by positron annihilation spectroscopy. J Phys Conf Ser 443(1):012010

    Article  Google Scholar 

  11. Kwon J, Toyama T, Kim YM, Kim W, Hong JH (2009) Effects of radiation-induced defects on microstructural evolution of Fe–Cr model alloys. J Nucl Mater 386:165–168

    Article  Google Scholar 

  12. Lambrecht M, Malerba L (2011) Positron annihilation spectroscopy on binary Fe–Cr alloys and ferritic/martensitic steels after neutron irradiation. Acta Mater 59(17):6547–6555

    Article  CAS  Google Scholar 

  13. Huang SS, Sato K, Xu Q, Yoshiie T, Tsuchida H, Itoh A (2014) Positron annihilation and TEM studies on ion irradiated Fe and Fe–Cr model alloys of ferritic/martensitic steel. J Nucl Mater 455(1–3):122–125

    Article  CAS  Google Scholar 

  14. Sato K, Ikemura K, Krsjak V, Vieh C, Brun R, Xu Q, Yoshiie T, Dai Y (2016) Defect structures of F82H irradiated at SINQ using positron annihilation spectroscopy. J Nucl Mater 468:281–284

    Article  CAS  Google Scholar 

  15. Huang SS, Yoshiie T, Xu Q, Sato K, Troev TD (2013) Positron annihilation studies of electron-irradiated F82H model alloys. J Nucl Mater 440(1–3):617–621

    Article  CAS  Google Scholar 

  16. Chun YB, Kang SH, Lee DW, Cho S, Jeong YH, Żywczak A, Rhee CK (2016) Development of Zr-containing advanced reduced-activation alloy (ARAA) as structural material for fusion reactors. Fusion Eng Des 109:629–633

    Article  Google Scholar 

  17. Babu SH, Rajaraman R, Amarendra G, Govindaraj R, Lalla NP, Dasgupta A, Bhalerao G, Sundar CS (2012) Dislocation driven chromium precipitation in Fe–9Cr binary alloy: a positron lifetime study. Philos Mag 92(23):2848–2859

    Article  CAS  Google Scholar 

  18. Ragunanthan V, Babu SH, Chirayath VA, Rajaraman R, Amarendra G, Saroja S, Sundar CS, Alamo A, Raj B (2009) Positron annihilation studies on 9Cr reduced activation ferritic/martensitic steels. Phys Status Solidi C 6(11):2307–2309

    Article  CAS  Google Scholar 

  19. Lian X, Cao X, Zhao Y, Jin S, Luo J, Zhu T, Gong Y, Wang B, Yu R (2018) Evolution of Thermally-Induced Microstructural Defects in the Fe–9Cr Alloy. Phys Status Solidi A 215(1):1700349

    Article  Google Scholar 

  20. Bertolaccini M, Zappa L (1967) Source-supporting foil effect on the shape of positron time annihilation spectra. Il Nuovo Cimento B 52(2):487–494

    Article  CAS  Google Scholar 

  21. Kirkegaard P, Olsen JV, Eldrup MM (2017) PALSfit3: a software package for analyzing positron lifetime spectra. Technical University of Denmark, Kongens Lyngby

    Google Scholar 

  22. Čížek J (2018) Characterization of lattice defects in metallic materials by positron annihilation spectroscopy: a review. J Mater Sci 34(4):577–598

    Google Scholar 

  23. Robles JC, Ogando E, Plazaola F (2007) Positron lifetime calculation for the elements of the periodic table. J Phys Condens Matter 19(17):176222

    Article  Google Scholar 

  24. Mohamed HF, Kwon J, Kim YM, Kim W (2007) Vacancy-type defects in cold-worked iron studied using positron annihilation techniques. Nucl Instrum Methods Phys Res B 258(2):429–434

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Radiation Technology R&D program through the National Research Foundation of Korea funded by the Ministry of Science and ICT (RF-2017M2A2A6A05018529) and the National Research Foundation of Korea funded by the Ministry of Science and ICT (1711078081).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaegi Lee.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, Y.S., Lee, J., Chun, YB. et al. Positron annihilation lifetime spectroscopy of advanced reduced-activation alloy (ARAA) in cold‐worked conditions. J Radioanal Nucl Chem 330, 513–519 (2021). https://doi.org/10.1007/s10967-021-07758-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07758-0

Keywords

Navigation