Skip to main content
Log in

Light availability interferes with absorption and translocation of 14C-glyphosate in Urochloa brizantha cv. Marandu plants

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

This research aimed to evaluate the absorption and translocation of 14C-glyphosate in Urochloa brizantha cv. Marandu subjected to different light availabilities. Six light conditions were studied: application followed by 24, 48 or 72 h of dark, 72 h of light, 24 h of dark + 48 h of light and daytime in different evaluation times: 0, 3, 6, 12, 24, 48, and 72 h after application of 14C-glyphosate (1.67 kBq/plant). The herbicide absorption was higher in plants with less light availability at 72 HAA (48 and 21% for 72 h of darkness and 72 h of light, respectively); however, there was a greater translocation of 14C-glyphosate to roots in the high availability of light (23 and 5% for 72 h of light and 72 h of dark, respectively). Thus, in U. brizantha plants, under conditions of greater light availability, 14C-glyphosate was less absorbed, but the product was more translocated. It is recommended that farmers to apply glyphosate at daytime since the light positively favored translocation, which is essential to the herbicidal activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Travlos I, Cheimona N, Bilalis D (2017) Glyphosate efficacy of different salt formulations and adjuvant additives on various weeds. Agronomy 7(3):60. https://doi.org/10.3390/agronomy7030060

    Article  CAS  Google Scholar 

  2. Velini ED, Meschede DK, Carbonari CA, Trindade MLB (2009). Glyphosate (Fepaf), Botucatu

  3. Albrecht LP, Albrecht AJP, Victoria Filho R (2013) In: Albrecht LP, Missio RF (eds) Management of transgenic crops. UFPR, Palotina, pp 26–45

    Google Scholar 

  4. Toni LR, Santana HD, Zaia DA (2006) Glyphosate adsorption on soils and minerals. Quím Nova 29(4):829–833. https://doi.org/10.1590/S0100-40422006000400034

    Article  CAS  Google Scholar 

  5. Kruse ND, Trezzi MM, Vidal RA (2000) EPSPS-inhibiting herbicides: literature review. Rev Brasil Herbic 1(2):139–146. https://doi.org/10.7824/rbh.v1i2.328

    Article  Google Scholar 

  6. Castro EB, Carbonari CA, Velini ED, Belapart D, Gomes GLGC, Ben R (2016) Absorption, translocation and metabolic effects of glyphosate in eucalyptus plants. Sci For 44(111):719–727. https://doi.org/10.18671/scifor.v44n111.18

    Article  Google Scholar 

  7. Effects of glyphosate on plants: physiological and agronomic implications, IPNI. https://pdfs.semanticscholar.org/f159/f5d1270716d9bd3b8826f657814f59e188f4.pdf. Accessed 20 May 2020

  8. Satichivi NM, Wax LM, Stoller EW, Briskin DP (2000) Absorption and translocation of glyphosate isopropylamine and trimethysulfonium salts in Abutilon theophrasti and Setaria faberi. Weed Sci 48(6):675–679. https://doi.org/10.1614/0043-745(2000)048%5b0675:AATOGIunette2.0.CO;2

    Article  Google Scholar 

  9. Monquero PA, Christoffoleti PI, Osuna MD, Prado RA (2004) Absorption, translocation and metabolism of glyphosate by plants tolerant and susceptible to this herbicide. Planta Daninha 22(3):445–451. https://doi.org/10.1590/S0100-83582004000300015

    Article  Google Scholar 

  10. Carvalho SJP, Tarozzo HF, Dias ACR, Nicolai M, Christoffoleti PJ (2011) Nitrogen participation in the induction of leaf injuries and in the effectiveness of the herbicide glyphosate. Rev Ceres 58(4):516–524. https://doi.org/10.1590/S0034-737X2011000400017

    Article  Google Scholar 

  11. Moraes HMF (2019) Syrup volume, dose and time of application of glyphosate in the control of Urochloa brizantha cv. Marandu. Dissertation, Federal University of Viçosa

  12. Cabral CEA, Cabral LS, Silva EMB, Carvalho KS, Kroth BE, Cabral CHA (2016) Reply from Brachiaria brizantha cv. Marandu to nitrogen fertilizers associated with reactive natural phosphate. Comum Sci 7(1):66–72. https://doi.org/10.14295/cs.v7i1.964

    Article  Google Scholar 

  13. Limitations and potential of brachiarão grass (Brachiaria brizantha cv. Marandu (A. Rich) Stapf.) for the Amazon, Embrapa Amazônia Oriental. https://ainfo.cnptia.embrapa.br/digital/bitstream/item/63972/1/Oriental-Doc211.pdf. Accessed 20 May 2020

  14. Freitas FCL, Ferreira LR, Ferreira FA, Santos MV, Agnes EL, Cardoso AA, Jakelaitis A (2005) Pasture formation via Brachiaria brizantha intercrop with silage corn under no-tillage system. Planta Daninha 23(1):49–58. https://doi.org/10.1590/S0100-83582005000100007

    Article  Google Scholar 

  15. Brachiaria brizantha cv. Marandu, Embrapa CNPGC. https://www.infoteca.cnptia.embrapa.br/bitstream/doc/317899/1/Brachiariabrizantha.pdf. Accessed 20 May 2020

  16. Martinson KB, Sothern RB, Koukkari WL, Durgan BR, Gunsolus JL (2002) Circadian response of annual weeds to glyphosate and glufosinate. Chronobiol Int 19(2):405–422. https://doi.org/10.1081/CBI-120002877

    Article  CAS  PubMed  Google Scholar 

  17. Waltz AL, Martin AR, Roeth FW, Lindquist JL (2004) Glyphosate efficacy on velvetleaf varies with application time of day. Weed Technol 18(4):931–939. https://doi.org/10.1614/WT-03-123R3

    Article  CAS  Google Scholar 

  18. Mohr K, Sellers BA, Smeda RJ (2007) Application time of day influences glyphosate efficacy. Weed Technol 21(1):7–13. https://doi.org/10.1614/WT-04-251.1

    Article  CAS  Google Scholar 

  19. Santos A Jr, Tuffi Santos LD, Costa GA, Barbosa EA, Leite GLD, Machado VD, Cruz LR (2013) Management of nutsedge and trapoeraba with glyphosate in shaded environments. Planta Daninha 31(1):213–221. https://doi.org/10.1590/S0100-83582013000100023

    Article  Google Scholar 

  20. Almeida DP, Ferreira MDC, Santos RTDS, Griesang F, Santos EDSD, Timossi PC (2020) Influence of glyphosate concentrations on spray solution physicochemical characteristics and drift potential. Eng Agríc 40(1):69–77. https://doi.org/10.1590/1809-4430-eng.agric.v40n1p69-77/2020

    Article  Google Scholar 

  21. Mendes KF, Martins BAB, Reis FC, Dias ACR, Tornisielo VL (2017) Methodologies to study the behavior of herbicides on plants and the soil using radioisotopes. Planta Daninha 35:e017154232. https://doi.org/10.1590/s0100-83582017350100049

    Article  Google Scholar 

  22. Nandula VK, Vencill WK (2015) Herbicide absorption and translocation in plants using radioisotopes. Weed Sci 63(1):140–151. https://doi.org/10.1614/WS-D-13-00107.1

    Article  Google Scholar 

  23. Oliveira Junior RS, Constantin J, Inoue MH (2011). Biology and weed management (Omnipax), Curitiba, 362 pp

  24. Vidal RA, Pagnoncelli F Jr, Fipke MV, Queiroz ARS, Bittencourt HVH, Trezzi MM (2014) Environmental factors that affect the effectiveness of glyphosate: synthesis of knowledge. Pestic Rev Ecotoxicol Meio Ambient 24:43–52. https://doi.org/10.5380/pes.v24i1.39028

    Article  CAS  Google Scholar 

  25. Cieslik LF, Vidal RA, Trezzi MM (2004) Environmental factors affecting the effectiveness of ACCase herbicidal inhibitors: review. Planta Daninha 31(2):483–489. https://doi.org/10.1590/S0100-83582013000200026

    Article  Google Scholar 

  26. Santos JI, Amaral CL, Alves PLC, Gasparino EC (2016) Can light intensity influence the tolerance of Synedrellopsis grisebachii to glyphosate? Weed Biol Manag 16(1):3–15. https://doi.org/10.1111/wbm.12085

    Article  CAS  Google Scholar 

  27. Galon L, Ferreira EA, Aspiazú I, Concenço G, Silva AF, Silva AA, Vargas L (2013) Glyphosate translocation in herbicide tolerant plants. Planta Daninha 31(1):193–201. https://doi.org/10.1590/S0100-83582013000100021

    Article  Google Scholar 

  28. Cardinali VCB, Dias ACR, Mueller TC, Abercrombie L, Stewart CN Jr, Tornisielo VL, Christoffoleti PJ (2015) Shikimate accumulation, glyphosate absorption and translocation in horseweed biotypes. Planta Daninha 33(1):109–118. https://doi.org/10.1590/S0100-83582015000100013

    Article  Google Scholar 

  29. Galvani J, Rizzardi MA, Carneiro CM, Bianchi MA (2012) Leaf anatomy of Lolium multiflorum sensitive and resistant to glyphosate. Planta Daninha 30(2):407–413. https://doi.org/10.1590/S0100-83582012000200021

    Article  Google Scholar 

  30. Burke IC, Koger CH, Reddy KN, Wilcut JW (2007) Reduced translocation is the cause of antagonism of glyphosate by MSMA in browntop millet (Brachiaria ramosa) and Palmer amaranth (Amaranthus palmerii). Weed Technol 21(1):166–170. https://doi.org/10.1614/WT-06-064.1

    Article  CAS  Google Scholar 

  31. Gehring CA (2003) Growth responses to arbuscular mycorrhizae by rain forest seedlings vary with light intensity and tree species. Plant Ecol 167(1):127–139. https://doi.org/10.1023/A:1023989610773

    Article  Google Scholar 

  32. Moratelli EM, Costa MD, Lovato PE, Santos M, Paulilo MTS (2007) Effect of water and light availability on mycorrhizal colonization and growth of Tabebuia avellanedae Lorentz ex Griseb (Bignoniaceae). Rev Árvore 31(3):555–566. https://doi.org/10.1590/S0100-67622007000300021

    Article  Google Scholar 

  33. Tuffi Santos SLD, Santos JB, Ferreira FA, Oliveira JÁ, Bentivenha S, Machado AFL (2008) Root glyphosate exudation by Brachiaria decumbens and its effects on eucalyptus plants. Planta Daninha 26(2):369–374. https://doi.org/10.1590/S0100-83582005000100017

    Article  Google Scholar 

  34. Viti ML, Alves PAT, Mendes KF, Pimpinato RF, Guimarães ACD, Tornisielo VL (2019) Translocation and root exudation of glyphosate by Urochloa brizantha and its transport on sugarcane and citrus seedlings. Planta Daninha 37:e019183334. https://doi.org/10.1590/s0100-83582019370100030

    Article  Google Scholar 

  35. González-Torralva F, Gil-Humanes J, Barro F, Brants I, De Prado R (2012) Target site mutation and reduced translocation are present in a glyphosate-resistant Lolium multiflorum Lam. biotype from Spain. Plant Physiol Biochem 58:16–22. https://doi.org/10.1016/j.plaphy.2012.06.001

    Article  CAS  PubMed  Google Scholar 

  36. Feng PC, Tran M, Chiu T, Sammons RD, Heck GR, CaJacob CA (2004) Investigations into glyphosate-resistant horseweed (Conyza canadensis): retention, uptake, translocation, and metabolismo. Weed Sci 52(4):498–505. https://doi.org/10.1614/WS-03-137R

    Article  CAS  Google Scholar 

  37. Sharkhuu A, Narasimhan ML, Merzaban JS, Bressan RA, Weller S, Gehring C (2014) A red and far-red light receptor mutation confers resistance to the herbicide glyphosate. Plant J 78(6):916–926. https://doi.org/10.1111/tpj.12513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Palma-Bautista C, Alcántara-De La Cruz R, Rojano-Delgado AM, Dellaferrera I, Domínguez-Martínez PA, De Prado R (2019) Low temperatures enhance the absorption and translocation of 14C-glyphosate in glyphosate-resistant Conyza sumatrensis. J Plant Physiol 240:e153009. https://doi.org/10.1016/j.jplph.2019.153009

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge the Federal University of Viçosa, the Agricultural Sciences Center, the Department of Agronomy and CENA-USP for the infrastructure available for conducting studies. To the Coordination for the Improvement of Higher Education Personnel (CAPES) for granting the scholarship, process 88882.349336/2019-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kassio Ferreira Mendes.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mota, L.M., Mendes, K.F., Júnior, L.H.B. et al. Light availability interferes with absorption and translocation of 14C-glyphosate in Urochloa brizantha cv. Marandu plants. J Radioanal Nucl Chem 326, 683–693 (2020). https://doi.org/10.1007/s10967-020-07333-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07333-z

Keywords

Navigation