Skip to main content
Log in

Electrochemical response of various metals to oxygen gas bubbling in molten LiCl–Li2O melt

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The electrochemical response of several alloys (stainless steel 316, Hastelloy C276, Inconel 600, and tantalum) was investigated in molten LiCl–Li2O (1 wt%) at 923 K while bubbling oxygen gas into the molten salt. Tafel and zero resistance ammeter (ZRA) electrochemical methods were used to measure electrochemical effects of oxidation processes at the surface of each alloy. The Tafel method required approximately 15 min and was, thus, applied only in intervals between periods of oxygen bubbling in the salt. ZRA measurements were made in real time, while the O2 was actively being bubbled into the salt. This method recorded both open circuit potential of the alloy relative to a Ni/NiO reference electrode and current between the alloy and the galvanically coupled platinum plate that served as the counter electrode. Both open circuit potential and galvanic oxidation current started to increase at the initiation of oxygen flow. Based on the observed oxidation current trend, it was inferred that the metals in order of increasing resistance to oxidation in molten LiCl–Li2O are as follows: tantalum < SS-316 < Inconel 600 < Haynes C276. Scanning electron microscopy images indicated formation of an oxide layer of thickness 560–3370 nm that correlates with the galvanic oxidation current measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

\( a_{\text{ox}} \) :

Activity of oxidized species

\( a_{\text{red}} \) :

Activity of reduced species

\( \beta_{\text{a}} \) :

Anodic Tafel constant (V/decade)

\( \beta_{\text{c}} \) :

Cathodic Tafel constant (V/decade)

\( E_{\text{eq}} \) :

Equilibrium potential for reaction (V)

\( E^{0} \) :

Standard reduction potential (V)

\( E_{\text{corr}} \) :

Corrosion potential (V)

\( E_{\text{oc}} \) :

Open circuit potential (V)

\( I_{{}} \) :

Overall measured current (A)

\( I_{\text{corr}} \) :

Corrosion current (A)

n :

Moles of electrons

R :

Ideal gas constant (J/mol K)

T :

Temperature (K)

References

  1. Usami Tsuyoshi (2002) Pyrochemical reduction of uranium dioxide and plutonium dioxide by lithium metal. J Nucl Mater 300(1):15–26

    Article  CAS  Google Scholar 

  2. Yoo Jae-Hyung (2008) A conceptual study of pyroprocessing for recovering actinides from spent oxide fuels. Nuclear Eng Technol 40(7):581–592

    Article  CAS  Google Scholar 

  3. Mudali UK, Dayal RK, Gnanamoorthy JB (1993) Corrosion studies on materials of construction for spent nuclear fuel reprocessing plant equipment. J Nucl Mater 203(1):73–82

    Article  CAS  Google Scholar 

  4. Nishikata A, Numata H, Tsuru T (1991) Electrochemistry of molten salt corrosion. Mater Sci Eng A 146(1–2):15–31

    Article  Google Scholar 

  5. Mohandas DD, Fray DJ (2004) FFC Cambridge process and removal of oxygen from metal-oxygen systems by molten salt electrolysis: an overview. Trans Indian Inst Met 57(6):579–592

    CAS  Google Scholar 

  6. Herrmann SD, Li SX, Simpson MF, Phongikaroon S (2006) Electrolytic reduction of spent nuclear oxide fuel as part of an integral process to separate and recover actinides from fission products. Sep Sci Technol 41(10):1965–1983

    Article  CAS  Google Scholar 

  7. Park Sung Bin (2006) Characteristics of an integrated cathode assembly for the electrolytic reduction of uranium oxide in a LiCl–Li2O molten salt. J Radioanal Nucl Chem 268(3):489–495

    Article  CAS  Google Scholar 

  8. Choi Eun-Young, Won Chan Yeon, Cha Ju-Sun, Park Wooshin, Im Hun Suk, Hong Sun-Seok, Hur Jin-Mok (2014) Electrochemical reduction of UO2 in LiCl–Li2O molten salt using porous and nonporous anode shrouds. J Nucl Mater 444(1–3):261–269

    Article  CAS  Google Scholar 

  9. Horvath D, Bagri P, Simpson MF (2018) Electrochemical methods for continuous metal corrosion monitoring in molten salts american nuclear society conference proceedings. Philadelphia PA

  10. Jeong SM, Shin H-S, Cho S-H, Hur J-M, Lee HS (2009) Electrochemical behavior of a platinum anode for reduction of uranium oxide in a LiCl molten salt. Electrochim Acta 54:6335–6340

    Article  CAS  Google Scholar 

  11. Olson Luke C, Ambrosek James W, Sridharan Kumar, Anderson Mark H, Allen Todd R (2009) Materials corrosion in molten LiF–NaF–KF salt. J Fluor Chem 130(1):67–73

    Article  CAS  Google Scholar 

  12. Herrmann SD, Tripathy PK, Frank SM, King JA (2019) Comparative study of monolithic platinum and iridium as oxygen-evolving anodes during the electrolytic reduction of uranium oxide in a molten LiCl–Li2O electrolyte. J Appl Electrochem 49(4):379–388

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Horvath.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horvath, D., Dale, O. & Simpson, M. Electrochemical response of various metals to oxygen gas bubbling in molten LiCl–Li2O melt. J Radioanal Nucl Chem 323, 387–397 (2020). https://doi.org/10.1007/s10967-019-06925-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-019-06925-8

Keywords

Navigation