Skip to main content
Log in

The ISOLPHARM project: ISOL-based production of radionuclides for medical applications

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Radionuclides for radiopharmaceuticals can be produced in cyclotrons or nuclear reactors. Each of these production modes has serious issues, such as high target costs, production of long-lived wastes and contaminants, expensive separation. For this reason, new methods are under consideration for the production of highly pure radionuclides. The ISOL (Isotope Separation On-Line) method is the major technique for the production of radioactive ion beams for nuclear physics applications. The SPES-ISOLPHARM project at INFN-LNL (Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali di Legnaro) is a feasibility study for the production of medical isotopes exploiting the ISOL method. The ongoing activities concerning a recent experiment focused on 111Ag, a study performed in collaboration with Padova and Trento Universities, is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Liu S (2008) Bifunctional coupling agents for radiolabeling of biomolecules and target-specific delivery of metallic radioisotopes. Adv Drug Deliv Rev 60(12):1347–1370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nilsson T (2013) European RIB facilities—status and future. Nucl Instrum Methods Phys Res Sect B 317:194–200

    Article  CAS  Google Scholar 

  3. Corradetti S (2015) Thermal conductivity and emissivity measurements of uranium carbides. Nucl Instrum Methods Phys Res Sect B 360:46–53

    Article  CAS  Google Scholar 

  4. Manzolaro M (2010) Thermal-electric numerical simulation of a surface ion source for the production of radioactive ion beams. Nucl Instrum Methods Phys Res 623:1061–1069

    Article  CAS  Google Scholar 

  5. Borgna F (2017) A preliminary study for the production of high specific activity radioisotopes for nuclear medicine obtained with the isotope separation on line technique. Appl Radiat Isot 127:214–226

    Article  CAS  PubMed  Google Scholar 

  6. Kuroda I (2012) Effective use of strontium-89 in osseous metastases. Ann Nucl Med 26:197–206

    Article  CAS  PubMed  Google Scholar 

  7. Yeong C (2014) Therapeutic radioisotopes in nuclear medicine: current and future prospects. J Zhejiang Univ Sci 15(10):845–863

    Article  CAS  Google Scholar 

  8. Shi F (2014) Metastatic malignant melanoma: computed tomography-guided 125I seed implantation treatment. Melanoma Res 24(2):137–143

    Article  CAS  PubMed  Google Scholar 

  9. Rodrigues G (2013) Low-dose rate brachytherapy for patients with low or intermediate-risk prostate cancer: a systematic review. Can Urol Assoc J 7:463–470

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wyszomirska A (2012) Iodine-131 for therapy of thyroid diseases. Phys Biol Basis Nucl Med Rev Cent East Eur 15(2):120–123

    Google Scholar 

  11. Borgna F (2018) Early evaluation of copper radioisotope production at ISOLPHARM. Molecules 23:2437

    Article  CAS  PubMed Central  Google Scholar 

  12. Müller C (2017) Therapeutic radiometals Beyond 177Lu and 90Y: production and application of promising α-particle, β-particle, and auger electron emitters. J Nucl Med 58:91S–96S

    Article  CAS  PubMed  Google Scholar 

  13. Müller C (2012) A unique matched quadruplet of terbium radioisotopes for PET and SPECT and for α- and β- radionuclide therapy: an in vivo proof-of-concept study with a new receptor-targeted folate derivative. J Nucl Med 53(12):1951–1959

    Article  CAS  PubMed  Google Scholar 

  14. Mastren Y (2018) Chromatographic separation of the theranostic radioisotope 111Ag from a proton irradiated thorium matrix. Anal Chim Acta 998:75–82

    Article  CAS  PubMed  Google Scholar 

  15. Vértes A (2011) Handbook of nuclear chemistry. Springer, Berlin

    Book  Google Scholar 

  16. Aweda TA (2013) The use of Ag-111 as a tool for studying biological distribution of silver-based antimicrobials. MedChemComm 4:1015–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu S (2001) Bifunctional chelators for therapeutic lanthanide radiopharmaceuticals. Bioconjugate Chem 12:7–34

    Article  CAS  Google Scholar 

  18. Brechbiel MW (2008) Bifunctional chelates for metal nuclides. Q J Nucl Med Mol Imaging 52(2):166–173

    CAS  PubMed  Google Scholar 

  19. Gyr T (1997) A highly stable silver complex of a macrocycle derived from tetraazatetrathiacyclen. Angew Chem 36(24):2786–2788

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Andrighetto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrighetto, A., Tosato, M., Ballan, M. et al. The ISOLPHARM project: ISOL-based production of radionuclides for medical applications. J Radioanal Nucl Chem 322, 73–77 (2019). https://doi.org/10.1007/s10967-019-06698-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-019-06698-0

Keywords

Navigation