Skip to main content
Log in

Anthropogenic radioactive particles in the environment

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Radioactive particles have been released from multiple sources since the mid-twentieth century. Famous examples include nuclear fuel particles from Chernobyl, glassy microparticles from Fukushima as well as particles from nuclear weapons production facilities (e.g., Windscale, United Kingdom and the facilities in the former Soviet Union), nuclear weapons accidents at Palomares (Spain) and Thule (Greenland), and atmospheric nuclear explosions. Current challenges in environmental research of radioactive particles include the drying of the cooling pond of Chernobyl NPP, which will cause the weathering of previously preserved fuel particles in the (former) sediment of the pond. Environmental aspects of resuspended particles as well as natural particles and aerosols contaminated with radionuclides (e.g., 131I) are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Taken from [4]. Reprinted with permission from Elsevier, © 2012

Fig. 2
Fig. 3

Taken from [2], reprinted from with permission from Elsevier © 2018 (Adapted from [14]). (Color figure online)

Fig. 4

Taken from [33], reprinted with permission from Elsevier, © Niimura et al. 2015

Fig. 5

Taken from [37], reprinted with permission from Springer © 2015

Similar content being viewed by others

References

  1. IAEA (2011) Radioactive particles in the environment: sources, particle characterization and analytical techniques (IAEA-TECDOC-1663). IAEA, Vienna

    Google Scholar 

  2. Salbu B, Kashparov V, Lind OC, Garcia-Tenorio R, Johansen MP, Child DP, Roos P, Sancho C (2018) Challenges associated with the behaviour of radioactive particles in the environment. J Environ Radioact 186:101–115. https://doi.org/10.1016/j.jenvrad.2017.09.001

    Article  CAS  PubMed  Google Scholar 

  3. Salbu B (2007) Speciation of radionuclides - analytical challenges within environmental impact and risk assessments. J Environ Radioact 96(1–3):47–53. https://doi.org/10.1016/j.jenvrad.2007.01.028

    Article  CAS  PubMed  Google Scholar 

  4. Kashparov V, Yoschenko V, Levchuk S, Bugai D, Van Meir N, Simonucci C, Martin-Garin A (2012) Radionuclide migration in the experimental polygon of the Red Forest waste site in the Chernobyl zone—part 1: characterization of the waste trench, fuel particle transformation processes in soils, biogenic fluxes and effects on biota. Appl Geochem 27(7):1348–1358. https://doi.org/10.1016/j.apgeochem.2011.11.004

    Article  CAS  Google Scholar 

  5. Salbu B, Krekling T, Lind OC, Oughton DH, Drakopoulos M, Simionovici A, Snigireva I, Snigirev A, Weitkamp T, Adams F, Janssens K, Kashparov VA (2001) High energy X-ray microscopy for characterisation of fuel particles. Nucl Instrum Methods Phys Res A 467–468:1249–1252. https://doi.org/10.1016/S0168-9002(01)00641-6

    Article  Google Scholar 

  6. Kashparov VA, Ivanov YA, Zvarisch SI, Protsak VP, Khomutinin YV, Kurepin AD, Pazukhin EM (1996) Formation of hot particles during the Chernobyl nuclear power plant accident. Nucl Technol 114(2):246–253. https://doi.org/10.13182/NT96-A35253

    Article  CAS  Google Scholar 

  7. Ahamdach N (2002) The Chernobyl pilot site project: isolation and microscopic characterisation of fuel particles. Radioprot Colloq 37(C1):1055–1060

    Google Scholar 

  8. Kashparov VA, Ahamdach N, Zvarich SI, Yoschenko VI, Maloshtan IM, Dewiere L (2004) Kinetics of dissolution of Chernobyl fuel particles in soil in natural conditions. J Environ Radioact 72(3):335–353. https://doi.org/10.1016/j.jenvrad.2003.08.002

    Article  CAS  PubMed  Google Scholar 

  9. Ahamdach N, Stammose D (2000) Isolation and microscopic characterization of nuclear fuel particles from contaminated soil of Chernobyl. Comptes Rendus de l’Academie de Sciences - Serie IIa: Sciences de la Terre et des Planetes 330(6):415–422. https://doi.org/10.1016/S1251-8050(00)00147-6

    Article  CAS  Google Scholar 

  10. Bugai DA, Waters RD, Dzhepo SP, Skalsk’ij AS (1997) The cooling pond of the Chernobyl nuclear power plant: a groundwater remediation case history. Water Resour Res 33(4):677–688. https://doi.org/10.1029/96WR03963

    Article  CAS  Google Scholar 

  11. Bobovnikova TI, Virchenko YP, Konoplev A, Siverina AA, Shkuratova IG (1990) Chemical forms of occurrence of the long-lived radionuclides and their alteration in soils near the Chernobyl power station. Sov Soil Sci 23:52–57

    Google Scholar 

  12. Bulgakov A, Konoplev A, Smith J, Laptev G, Voitsekhovich O (2009) Fuel particles in the Chernobyl cooling pond: current state and prediction for remediation options. J Environ Radioact 100(4):329–332. https://doi.org/10.1016/j.jenvrad.2008.12.012

    Article  CAS  PubMed  Google Scholar 

  13. Jaeschke BC, Lind OC, Bradshaw C, Salbu B (2015) Retention of radioactive particles and associated effects in the filter-feeding marine mollusc Mytilus edulis. Sci Total Environ 502:1–7. https://doi.org/10.1016/j.scitotenv.2014.09.007

    Article  CAS  PubMed  Google Scholar 

  14. Caffrey EA, Johansen MP, Higley KA (2016) Voxel modeling of rabbits for use in radiological dose rate calculations. J Environ Radioact 151:480–486. https://doi.org/10.1016/j.jenvrad.2015.04.008

    Article  CAS  PubMed  Google Scholar 

  15. Dadachova E, Bryan RA, Huang X, Moadel T, Schweitzer AD, Aisen P, Nosanchuk JD, Casadevall A (2007) Ionizing radiation changes the electronic properties of melanin and enhances the growth of melanized fungi. PLoS ONE 2:e457. https://doi.org/10.1371/journal.pone.0000457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Steinhauser G, Brandl A, Johnson TE (2014) Comparison of the Chernobyl and Fukushima nuclear accidents: a review of the environmental impacts. Sci Total Environ 470–471:800–817. https://doi.org/10.1016/j.scitotenv.2013.10.029

    Article  CAS  PubMed  Google Scholar 

  17. Masson O, Baeza A, Bieringer J, Brudecki K, Bucci S, Cappai M, Carvalho FP, Connan O, Cosma C, Dalheimer A, Didier D, Depuydt G, De Geer LE, De Vismes A, Gini L, Groppi F, Gudnason K, Gurriaran R, Hainz D, Halldorsson O, Hammond D, Hanley O, Holey K, Homoki Z, Ioannidou A, Isajenko K, Jankovic M, Katzlberger C, Kettunen M, Kierepko R, Kontro R, Kwakman PJM, Lecomte M, Leon Vintro L, Leppanen AP, Lind B, Lujaniene G, McGinnity P, McMahon C, Mala H, Manenti S, Manolopoulou M, Mattila A, Mauring A, Mietelski JW, Moller B, Nielsen SP, Nikolic J, Overwater RMW, Palsson SE, Papastefanou C, Penev I, Pham MK, Povinec PP, Rameback H, Reis MC, Ringer W, Rodriguez A, Rulik P, Saey PRJ, Samsonov V, Schlosser C, Sgorbati G, Silobritiene BV, Soderstrom C, Sogni R, Solier L, Sonck M, Steinhauser G, Steinkopff T, Steinmann P, Stoulos S, Sykora I, Todorovic D, Tooloutalaie N, Tositti L, Tschiersch J, Ugron A, Vagena E, Vargas A, Wershofen H, Zhukova O (2011) Tracking of airborne radionuclides from the damaged Fukushima Dai-Ichi nuclear reactors by European networks. Environ Sci Technol 45(18):7670–7677. https://doi.org/10.1021/es2017158

    Article  CAS  PubMed  Google Scholar 

  18. Thakur P, Ballard S, Nelson R (2012) Radioactive fallout in the United States due to the Fukushima nuclear plant accident. J Environ Monit 14(5):1317–1324. https://doi.org/10.1039/c2em11011c

    Article  CAS  PubMed  Google Scholar 

  19. Thakur P, Ballard S, Nelson R (2013) An overview of Fukushima radionuclides measured in the northern hemisphere. Sci Total Environ 458–460:577–613. https://doi.org/10.1016/j.scitotenv.2013.03.105

    Article  CAS  PubMed  Google Scholar 

  20. Mathieu A, Kajino M, Korsakissok I, Perillat R, Quelo D, Querel A, Saunier O, Sekiyama TT, Igarashi Y, Didier D (2018) Fukushima Daiichi-derived radionuclides in the atmosphere, transport and deposition in Japan: a review. Appl Geochem 91:122–139. https://doi.org/10.1016/j.apgeochem.2018.01.002

    Article  CAS  Google Scholar 

  21. Zheng J, Tagami K, Watanabe Y, Uchida S, Aono T, Ishii N, Yoshida S, Kubota Y, Fuma S, Ihara S (2012) Isotopic evidence of plutonium release into the environment from the Fukushima DNPP accident. Sci Rep 2:304. https://doi.org/10.1038/srep00304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schneider S, Walther C, Bister S, Schauer V, Christl M, Synal H-A, Shozugawa K, Steinhauser G (2013) Plutonium release from Fukushima Daiichi fosters the need for more detailed investigations. Sci Rep 3:2988. https://doi.org/10.1038/srep02988

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zheng J, Tagami K, Uchida S (2013) Release of plutonium isotopes into the environment from the Fukushima Daiichi nuclear power plant accident: what is known and what needs to be known. Environ Sci Technol 47:9584–9595. https://doi.org/10.1021/es402212v

    Article  CAS  PubMed  Google Scholar 

  24. Schneider S, Bister S, Christl M, Hori M, Shozugawa K, Synal H-A, Steinhauser G, Walther C (2017) Radionuclide pollution inside the Fukushima Daiichi exclusion zone, part 2: forensic search for the “forgotten” contaminants uranium-236 and plutonium. Appl Geochem 85:194–200. https://doi.org/10.1016/j.apgeochem.2017.05.022

    Article  CAS  Google Scholar 

  25. Bu W, Ni Y, Steinhauser G, Zheng W, Zheng J, Furuta N (2018) The role of mass spectrometry for radioactive contamination assessment after the Fukushima nuclear accident. J Anal At Spectrom 33:519–546. https://doi.org/10.1039/C7JA00401J

    Article  CAS  Google Scholar 

  26. Sakaguchi A, Steier P, Takahashi Y, Yamamoto M (2014) Isotopic compositions of 236U and Pu isotopes in “black substances” collected from roadsides in Fukushima prefecture: fallout from the Fukushima Dai-ichi nuclear power plant accident. Environ Sci Technol 48(7):3691–3697. https://doi.org/10.1021/es405294s

    Article  CAS  PubMed  Google Scholar 

  27. Yamamoto M, Sakaguchi A, Ochiai S, Imanaka T (2014) Isotopic compositions of transuranic nuclides released by the Fukushima Dai-ichi nuclear power plant accident: with emphasis on Cm isotopes. J Radioanal Nucl Chem 300(3):1045–1052. https://doi.org/10.1007/s10967-014-3003-7

    Article  CAS  Google Scholar 

  28. Kimura H, Uesugi M, Muneda A, Watanabe R, Yokoyama A, Nakanishi T (2015) The situation of Ag and Pu radioisotopes in soil released from Fukushima Daiichi nuclear power plants. J Radioanal Nucl Chem 303(2):1469–1471. https://doi.org/10.1007/s10967-014-3587-y

    Article  CAS  Google Scholar 

  29. Shinonaga T, Steier P, Lagos M, Ohkura T (2014) Airborne plutonium and non-natural uranium from the Fukushima DNPP Found at 120 km distance a few days after reactor hydrogen explosions. Environ Sci Technol 48(7):3808–3814. https://doi.org/10.1021/es404961w

    Article  CAS  PubMed  Google Scholar 

  30. Kashparov VA, Lundin SM, Zvarych SI, Yoshchenko VI, Levchuk SE, Khomutinin YV, Maloshtan IM, Protsak VP (2003) Territory contamination with the radionuclides representing the fuel component of Chernobyl fallout. Sci Total Environ 317(1–3):105–119. https://doi.org/10.1016/S0048-9697(03)00336-X

    Article  CAS  PubMed  Google Scholar 

  31. Salbu B, Lind OC (2016) Radioactive particles released to the environment from the Fukushima reactors—confirmation is still needed. Integr Environ Assess Manag 12(4):687–689. https://doi.org/10.1002/ieam.1834

    Article  CAS  PubMed  Google Scholar 

  32. Adachi K, Kajino M, Zaizen Y, Igarashi Y (2013) Emission of spherical cesium-bearing particles from an early stage of the Fukushima nuclear accident. Sci Rep 3:2554. https://doi.org/10.1038/srep02554. http://www.nature.com/articles/srep02554#supplementary-information

  33. Niimura N, Kikuchi K, Tuyen ND, Komatsuzaki M, Motohashi Y (2015) Physical properties, structure, and shape of radioactive Cs from the Fukushima Daiichi nuclear power plant accident derived from soil, bamboo and shiitake mushroom measurements. J Environ Radioact 139:234–239. https://doi.org/10.1016/j.jenvrad.2013.12.020

    Article  CAS  PubMed  Google Scholar 

  34. Sakamoto F, Ohnuki T, Kozai N, Igarashi S, Yamazaki S, Yoshida Z, Tanaka S (2012) Local area distribution of fallout radionuclides from the Fukushima Daiichi nuclear power plant determined by autoradiography analysis. J Atom Energy Soc Jpn 11:1–7 (in Japanese)

    CAS  Google Scholar 

  35. Nakajima H, Fujiwara M, Tanihata I (2012) What can be seen in autoradiography image of leaves? Mod Chem 2012:34-37 (in Japanese)

    Google Scholar 

  36. Ikehara R, Suetake M, Komiya T, Furuki G, Ochiai A, Yamasaki S, Bower WR, Law GTW, Ohnuki T, Grambow B, Ewing RC, Utsunomiya S (2018) Novel method of quantifying radioactive cesium-rich microparticles (CsMPs) in the environment from the Fukushima Daiichi nuclear power plant. Environ Sci Technol 52(11):6390–6398. https://doi.org/10.1021/acs.est.7b06693

    Article  CAS  PubMed  Google Scholar 

  37. Minowa H (2015) Image analysis of radiocesium distribution in coniferous trees two years after the Fukushima Daiichi nuclear power plant accident. J Radioanal Nucl Chem 303(2):1601–1605. https://doi.org/10.1007/s10967-014-3817-3

    Article  CAS  Google Scholar 

  38. Satou Y, Sueki K, Sasa K, J-i Kitagawa, Ikarashi S, Kinoshita N (2015) Vertical distribution and formation analysis of the 131I, 137Cs, 129mTe, and 110mAg from the Fukushima Dai-ichi nuclear power plant in the beach soil. J Radioanal Nucl Chem 303(2):1197–1200. https://doi.org/10.1007/s10967-014-3562-7

    Article  CAS  Google Scholar 

  39. Abe Y, Iizawa Y, Terada Y, Adachi K, Igarashi Y, Nakai I (2014) Detection of uranium and chemical state analysis of individual radioactive microparticles emitted from the Fukushima nuclear accident using multiple synchrotron radiation X-ray analyses. Anal Chem 86(17):8521–8525. https://doi.org/10.1021/ac501998d

    Article  CAS  PubMed  Google Scholar 

  40. Ochiai A, Imoto J, Suetake M, Komiya T, Furuki G, Ikehara R, Yamasaki S, Law GTW, Ohnuki T, Grambow B, Ewing RC, Utsunomiya S (2018) Uranium Dioxides and debris fragments released to the environment with cesium-rich microparticles from the Fukushima Daiichi nuclear power plant. Environ Sci Technol 52(5):2586–2594. https://doi.org/10.1021/acs.est.7b06309

    Article  CAS  PubMed  Google Scholar 

  41. Imoto J, Ochiai A, Furuki G, Suetake M, Ikehara R, Horie K, Takehara M, Yamasaki S, Nanba K, Ohnuki T, Law GTW, Grambow B, Ewing RC, Utsunomiya S (2017) Isotopic signature and nano-texture of cesium-rich micro-particles: release of uranium and fission products from the Fukushima Daiichi nuclear power plant. Sci Rep 7(1):5409. https://doi.org/10.1038/s41598-017-05910-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kaneyasu N, Ohashi H, Suzuki F, Okuda T, Ikemori F (2012) Sulfate aerosol as a potential transport medium of radiocesium from the Fukushima nuclear accident. Environ Sci Technol 46(11):5720–5726. https://doi.org/10.1021/es204667h

    Article  CAS  PubMed  Google Scholar 

  43. Muramatsu H, Kawasumi K, Kondo T, Matsuo K, Itoh S (2015) Size-distribution of airborne radioactive particles from the Fukushima accident. J Radioanal Nucl Chem 303(2):1459–1463. https://doi.org/10.1007/s10967-014-3690-0

    Article  CAS  Google Scholar 

  44. Yamaguchi N, Kogure T, Mukai H, Akiyama-Hasegawa K, Mitome M, Hara T, Fujiwara H (2018) Structures of radioactive Cs-bearing microparticles in non-spherical forms collected in Fukushima. Geochem J 52(2):123–136. https://doi.org/10.2343/geochemj.2.0483

    Article  CAS  Google Scholar 

  45. Hirose M, Kikawada Y, Tsukamoto A, Oi T, Honda T, Hirose K, Takahashi H (2015) Chemical forms of radioactive Cs in soils originated from Fukushima Dai-ichi nuclear power plant accident studied by extraction experiments. J Radioanal Nucl Chem 303(2):1357–1359. https://doi.org/10.1007/s10967-014-3592-1

    Article  CAS  Google Scholar 

  46. Kikawada Y, Hirose M, Tsukamoto A, Nakamachi K, Oi T, Honda T, Takahashi H, Hirose K (2015) Mobility of radioactive cesium in soil originated from the Fukushima Daiichi nuclear disaster: application of extraction experiments. J Radioanal Nucl Chem 304(1):27–31. https://doi.org/10.1007/s10967-014-3713-x

    Article  CAS  Google Scholar 

  47. Koarashi J, Moriya K, Atarashi-Andoh M, Matsunaga T, Fujita H, Nagaoka M (2012) Retention of potentially mobile radiocesium in forest surface soils affected by the Fukushima nuclear accident. Sci Rep 2:1005. https://doi.org/10.1038/srep01005. http://www.nature.com/articles/srep01005#supplementary-information

  48. Xu S, Zhang L, Freeman SPHT, Hou X, Shibata Y, Sanderson D, Cresswell A, Doi T, Tanaka A (2015) Speciation of radiocesium and radioiodine in aerosols from Tsukuba after the Fukushima nuclear accident. Environ Sci Technol 49(2):1017–1024. https://doi.org/10.1021/es504431w

    Article  CAS  PubMed  Google Scholar 

  49. Kabdyrakova AM, Lukashenko SN, Mendubaev AT, Kunduzbayeva AY, Panitskiy AV, Larionova NV (2018) Distribution of artificial radionuclides in particle-size fractions of soil on fallout plumes of nuclear explosions. J Environ Radioact 186:45–53. https://doi.org/10.1016/j.jenvrad.2017.09.022

    Article  CAS  PubMed  Google Scholar 

  50. Momoshima N, Takashima T (1983) Variations in radionuclide concentrations and size distribution of radioactive particles from the Chinese nuclear weapon test of October 16, 1980. J Radioanal Chem 76(1):7–18. https://doi.org/10.1007/BF02519650

    Article  CAS  Google Scholar 

  51. Lind OC, Salbu B, Janssens K, Proost K, Garcia-Leon M, Garcia-Tenorio R (2007) Characterization of U/Pu particles originating from the nuclear weapon accidents at Palomares, Spain, 1966 and Thule, Greenland, 1968. Sci Total Environ 376(1–3):294–305. https://doi.org/10.1016/j.scitotenv.2006.11.050

    Article  CAS  PubMed  Google Scholar 

  52. Lind OC, Salbu B, Janssens K, Proost K, Dahlgaard H (2005) Characterization of uranium and plutonium containing particles originating from the nuclear weapons accident in Thule, Greenland, 1968. J Environ Radioact 81(1):21–32. https://doi.org/10.1016/j.jenvrad.2004.10.013

    Article  CAS  PubMed  Google Scholar 

  53. Bolsunovsky A, Melgunov M, Chuguevskii A, Lind OC, Salbu B (2017) Unique diversity of radioactive particles found in the Yenisei River floodplain. Sci Rep 7(1):11132. https://doi.org/10.1038/s41598-017-11557-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cagno S, Hellemans K, Lind OC, Skipperud L, Janssens K, Salbu B (2014) LA-ICP-MS for Pu source identification at Mayak PA, the Urals, Russia. Environ Sci Process Impacts 16(2):306–312. https://doi.org/10.1039/C3EM00531C

    Article  CAS  PubMed  Google Scholar 

  55. Chamberlain AC (1987) Environmental impact of particles emitted from Windscale Piles, 1954–1957. Sci Total Environ 63:139–160. https://doi.org/10.1016/0048-9697(87)90042-8

    Article  CAS  PubMed  Google Scholar 

  56. Lind OC, Salbu B, Skipperud L, Janssens K, Jaroszewicz J, De Nolf W (2009) Solid state speciation and potential bioavailability of depleted uranium particles from Kosovo and Kuwait. J Environ Radioact 100(4):301–307. https://doi.org/10.1016/j.jenvrad.2008.12.018

    Article  CAS  PubMed  Google Scholar 

  57. Salbu B, Janssens K, Lind OC, Proost K, Gijsels L, Danesi PR (2004) Oxidation states of uranium in depleted uranium particles from Kuwait. J Environ Radioact 78(2):125–135. https://doi.org/10.1016/j.jenvrad.2004.04.001

    Article  CAS  Google Scholar 

  58. Hilton J, Cambray RS, Green N (1992) Chemical fractionation of radioactive caesium in airborne particles containing bomb fallout, Chernobyl fallout and atmospheric material from the sellafield site. J Environ Radioact 15(2):103–111. https://doi.org/10.1016/0265-931X(91)90046-I

    Article  CAS  Google Scholar 

  59. Saey PRJ, Bean M, Becker A, Coyne J, d’Amours R, de Geer LE, Hogue R, Stocki TJ, Ungar RK, Wotawa G (2007) A long distance measurement of radioxenon in Yellowknife, Canada, in late October 2006. Geophys Res Lett 34:L20802/20801–L20802/20805. https://doi.org/10.1029/2007gl030611

    Article  Google Scholar 

  60. Terzi L, Kalinowski M (2017) World-wide seasonal variation of 7Be related to large-scale atmospheric circulation dynamics. J Environ Radioact 178–179:1–15. https://doi.org/10.1016/j.jenvrad.2017.06.031

    Article  CAS  PubMed  Google Scholar 

  61. Masson O, Steinhauser G, Wershofen H, Mietelski JW, Fischer HW, Pourcelot L, Saunier O, Bieringer J, Steinkopff T, Hýža M, Møller B, Bowyer TW, Dalaka E, Dalheimer A, de Vismes-Ott A, Eleftheriadis K, Forte M, Gasco Leonarte C, Gorzkiewicz K, Homoki Z, Isajenko K, Karhunen T, Katzlberger C, Kierepko R, Kövendiné Kónyi J, Malá H, Nikolic J, Povinec PP, Rajacic M, Ringer W, Rulík P, Rusconi R, Sáfrány G, Sykora I, Todorović D, Tschiersch J, Ungar K, Zorko B (2018) Potential source apportionment and meteorological vonditions involved in airborne 131I detections in January/February 2017 in Europe. Environ Sci Technol 52(15):8488–8500. https://doi.org/10.1021/acs.est.8b01810

    Article  CAS  PubMed  Google Scholar 

  62. Masson O, Ringer W, Malá H, Rulik P, Dlugosz-Lisiecka M, Eleftheriadis K, Meisenberg O, De Vismes-Ott A, Gensdarmes F (2013) Size distributions of airborne radionuclides from the fukushima nuclear accident at several places in europe. Environ Sci Technol 47(19):10995–11003. https://doi.org/10.1021/es401973c

    Article  CAS  PubMed  Google Scholar 

  63. Le Roux G, Pourcelot L, Masson O, Duffa C, Vray F, Renaud P (2008) Aerosol deposition and origin in French mountains estimated with soil inventories of 210Pb and artificial radionuclides. Atmos Environ 42(7):1517–1524. https://doi.org/10.1016/j.atmosenv.2007.10.083

    Article  CAS  Google Scholar 

  64. Masson O, Piga D, Gurriaran R, D’Amico D (2010) Impact of an exceptional Saharan dust outbreak in France: PM10 and artificial radionuclides concentrations in air and in dust deposit. Atmos Environ 44(20):2478–2486. https://doi.org/10.1016/j.atmosenv.2010.03.004

    Article  CAS  Google Scholar 

  65. Ioannidou A, Papastefanou C (2006) Precipitation scavenging of 7Be and 137Cs radionuclides in air. J Environ Radioact 85(1):121–136. https://doi.org/10.1016/j.jenvrad.2005.06.005

    Article  CAS  PubMed  Google Scholar 

  66. Sýkora I, Holý K, Ješkovský M, Müllerová M, Bulko M, Povinec PP (2017) Long-term variations of radionuclides in the Bratislava air. J Environ Radioact 166:27–35. https://doi.org/10.1016/j.jenvrad.2016.03.004

    Article  CAS  PubMed  Google Scholar 

  67. Rosner G, Winkler R (2001) Long-term variation (1986–1998) of post-Chernobyl 90Sr, 137Cs, 238Pu and 239,240Pu concentrations in air, depositions to ground, resuspension factors and resuspension rates in south Germany. Sci Total Environ 273(1–3):11–25. https://doi.org/10.1016/S0048-9697(00)00716-6

    Article  CAS  PubMed  Google Scholar 

  68. Hirose K (2012) 2011 Fukushima Dai-ichi nuclear power plant accident: summary of regional radioactive deposition monitoring results. J Environ Radioact 111:13–17. https://doi.org/10.1016/j.jenvrad.2011.09.003

    Article  CAS  PubMed  Google Scholar 

  69. Hirose K (2015) Two-years trend of monthly 137Cs deposition observed in Kanto and south Tohoku areas, Japan: effects of the Fukushima Dai-ichi nuclear power plant accident. J Radioanal Nucl Chem 303:1327–1329. https://doi.org/10.1007/s10967-014-3480-8

    Article  CAS  Google Scholar 

  70. Kitayama K, Tsukada H, Ohse K, Kawatsu K (2015) Concentration of 137Cs in atmospheric coarse and fine particles collected in Fukushima Prefecture. J Radioanal Nucl Chem 303(2):1159–1162. https://doi.org/10.1007/s10967-014-3512-4

    Article  CAS  Google Scholar 

  71. Kaneyasu N, Ohashi H, Suzuki F, Okuda T, Ikemori F, Akata N, Kogure T (2017) Weak size dependence of resuspended radiocesium adsorbed on soil particles collected after the Fukushima nuclear accident. J Environ Radioact 172:122–129. https://doi.org/10.1016/j.jenvrad.2017.03.001

    Article  CAS  PubMed  Google Scholar 

  72. Steinhauser G, Niisoe T, Harada KH, Shozugawa K, Schneider S, Synal H-A, Walther C, Christl M, Nanba K, Ishikawa H, Koizumi A (2015) Post-accident sporadic releases of airborne radionuclides from the Fukushima Daiichi nuclear power plant site. Environ Sci Technol 49(24):14028–14035. https://doi.org/10.1021/acs.est.5b03155

    Article  CAS  PubMed  Google Scholar 

  73. Rosenberg BL, Ball JE, Shozugawa K, Korschinek G, Hori M, Nanba K, Johnson TE, Brandl A, Steinhauser G (2017) Radionuclide pollution inside the Fukushima Daiichi exclusion zone, part 1: depth profiles of radiocesium and strontium-90 in soil. Appl Geochem 85:201–208. https://doi.org/10.1016/j.apgeochem.2017.06.003

    Article  CAS  Google Scholar 

  74. Hirose K, Igarashi Y, Aoyama M (2008) Analysis of the 50-year records of the atmospheric deposition of long-lived radionuclides in Japan. Appl Radiat Isot 66(11):1675–1678. https://doi.org/10.1016/j.apradiso.2007.09.019

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support of this work by the Prof. Joachim Lenz Foundation is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Steinhauser.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steinhauser, G. Anthropogenic radioactive particles in the environment. J Radioanal Nucl Chem 318, 1629–1639 (2018). https://doi.org/10.1007/s10967-018-6268-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-6268-4

Keywords

Navigation