Skip to main content
Log in

Synthesis and biodistribution of novel dansyl derivative 11C-DSB

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A novel 11C-labeled dansyl 1, 2-diphenylethene derivative for positron emission tomography (PET) imaging of β-amyloid (Aβ) plaques and apoptosis in the brain of Alzheimer’s disease (AD) was designed and synthesized. The 11C-labeled tracer, (E)-5-(dimethylamino)-N-(4-(4-11C-methoxystyryl)phenyl)-naphthalene-1-sulfonamide (11C-DSB), was synthesized. The decay-corrected radiochemistry yield was 20 ± 5% (n = 5) from 11C–CO2 within 20 min and the specific activity of 1.6 GBq/µmol. Moreover, in vivo biodistribution and preliminary PET imaging of normal mice were performed to show that 11C-DSB had moderate brain penetration and washout. But11C-DSB has high log P value, showing that its structure needs to be further improved to increase its water solubility. The results provide the basis for further research on PET and fluorescence dual-modality imaging of AD models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhang W, Oya S, Kung M, Hou C, Mier DL, Kung HF (2005) F-18 stilbenes as PET imaging agents for detecting β-amyloid plaques in the brain. J Med Chem 48(19):5980–5988. https://doi.org/10.1021/jm050166g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ono M, Wilson A, Nobrega J, Westaway D, Verhoeff P, Zhuang Z, Kung M, Kung HF (2003) 11C-labeled stilbene derivatives as Ah-aggregate-specific PET imaging agents for Alzheimer’s disease. Nucl Med Biol 30(6):565–571. https://doi.org/10.1016/S0969-8051(03)00049-0

    Article  CAS  PubMed  Google Scholar 

  3. Blennow K, Zetterberg H (2006) Pinpointing plaques with PIB. Nat Med 12(7):753–754. https://doi.org/10.1038/nm0706-753 (discussion, 754)

    Article  CAS  PubMed  Google Scholar 

  4. Kung HF, Choi SR, Qu W, Zhang W, Skovronsky D (2010) 18F stilbenes and styrylpyridines for PET imaging of Aβ plaques in Alzheimer’s disease: a miniperspective. J Med Chem 53(3):933–941. https://doi.org/10.1021/jm901039z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Camus V, Payoux P, Desgranges B, Voisin T, Tauber C, La Joie R, Tafani M, Hommet C, Chetelat G, Mondon K, de La Sayette V, Cottier JP, Beaufils E, Ribeiro MJ (2012) Using PET with 18F-AV-45 (florbetapir) to quantify brain amyloid load in a clinical environment. Eur J Nucl Med Mol I 39(4):621–631. https://doi.org/10.1007/s00259-011-2021-8

    Article  CAS  Google Scholar 

  6. Zhang W, Kung MP, Oya S, Hou C, Kung HF (2007) 18F-labeled styrylpyridines as PET agents for amyloid plaque imaging. Nucl Med Biol 34(1):89–97. https://doi.org/10.1016/j.nucmedbio.2006.10.003

    Article  CAS  PubMed  Google Scholar 

  7. Zhang W, Oya S, Kung M, Hou C, Maier DL, Kung HF (2005) F-18 Polyethyleneglycol stilbenes as PET imaging agents targeting Ah aggregates in the brain. Nucl Med Biol 32(8):799–809. https://doi.org/10.1016/j.nucmedbio.2005.06.001

    Article  CAS  PubMed  Google Scholar 

  8. Martí-Centelles R, Falomir E, Murga J, Carda M, Alberto Marco J (2015) Inhibitory effect of cytotoxic stilbenes related to resveratrol on the expression of the VEGF, hTERT and c-Myc genes. Eur J Med Chem 103(3):488–496. https://doi.org/10.1016/j.ejmech.2015.09.014

    Article  CAS  PubMed  Google Scholar 

  9. Martin Brown J, Attardi LD (2005) The role of apoptosis in cancer development and treatment response. Nat Rev Cancer 5(3):231–237. https://doi.org/10.1038/nrc1560

    Article  PubMed  Google Scholar 

  10. Gorman AM, Orrenius S, Ceccatelli S (1998) Apoptosis in neuronal cells: role of caspases. Neuroeport 9(10):R49–R55. https://doi.org/10.1097/00001756-199807130-00001

    Article  CAS  Google Scholar 

  11. Radi E, Formichi P, Battisti C, Federico A (2014) Apoptosis and oxidative stress in neurodegenerative diseases. J Alzheimers Dis 42(Suppl 3):S125. https://doi.org/10.3233/jad-132738

    Article  PubMed  Google Scholar 

  12. Aloya R, Shirvan A, Grimberg H, Reshef A, Levin G, Kidron D, Cohen A, Ziv I (2006) Molecular imaging of cell death in vivo by a novel small molecule probe. Apoptosis 11(12):2089–2101. https://doi.org/10.1007/s10495-006-0282-7

    Article  PubMed  PubMed Central  Google Scholar 

  13. Reshef A, Shirvan A, Grimberg H, Levin G, Cohen A, Mayk A, Kidtron D, Djaldetti R, Melamed E, Ziv I (2007) Novel molecular imaging of cell death in experimental cerebral stroke. Brain Res 1144(3):156–164. https://doi.org/10.1016/j.brainres.2007.01.095

    Article  CAS  PubMed  Google Scholar 

  14. Damianovich M, Ziv I, Heyman SN, Rosen S, Shina A, Kidron D, Aloya T, Grimberg H, Levin G, Reshef A, Bentolila A, Cohen A, Shirvan A (2006) ApoSense: a novel technology for functional molecular imaging of cell death in models of acute renal tubular necrosis. Eur J Nucl Med Mol I 33(3):281–291. https://doi.org/10.1007/s00259-005-1905-x

    Article  Google Scholar 

  15. Mita M, Tolcher AW (2005) Novel apoptosis inducing agents in cancer therapy. Curr Probl Cancer 29(1):8–32. https://doi.org/10.1016/j.currproblcancer.2004.11.001

    Article  PubMed  Google Scholar 

  16. Zeng W, Yao ML, Townsend D, Kabalka G, Wall J, Le Puil M, Biggerstaff J, Miao W (2008) Synthesis, biological evaluation and radiochemical labeling of a dansylhydrazone derivative as a potential imaging agent for apoptosis. Bioorg Med Chem Lett 18(12):3573–3577. https://doi.org/10.1016/j.bmcl.2008.05.002

    Article  CAS  PubMed  Google Scholar 

  17. Zhou D, Chu W, Rothfuss J, Zeng C, Xu J, Jones L, Welch MJ, Mach RH (2006) Synthesis, radiolabeling, and in vivo evaluation of an 18 F-labeled isatin analog for imaging caspase-3 activation in apoptosis. Bioorg Med Chem Lett 16(19):5041–5046. https://doi.org/10.1016/j.bmcl.2006.07.045

    Article  CAS  PubMed  Google Scholar 

  18. Reshef A, Shirvan A, Shohami E, Grimberg H, Levin G, Cohen A, Trembovler V, Ziv I (2008) Targeting cell death in vivo in experimental traumatic brain injury by a novel molecular probe. J Neurotraum 25(6):569. https://doi.org/10.1089/neu.2007.0341

    Article  Google Scholar 

  19. Wang H, Tang X, Tang G, Huang T, Liang X, Hu K, Deng H, Yi C, Shi X, Wu K (2013) Noninvasive positron emission tomography imaging of cell death using a novel small-molecule probe, (18)F labeled bis(zinc(II)-dipicolylamine) complex. Apoptosis 18(8):1017–1027. https://doi.org/10.1007/s10495-013-0852-4

    Article  CAS  PubMed  Google Scholar 

  20. The Chinese Pharmacopoeia Commission (2015) Pharmacopoeia of the people’s republic of China, part IV. China Medical Science Press, Beijing

    Google Scholar 

  21. Matarrese M, Moresco RM, Romeo G, Turolla E, Simonelli P, Todde S, Belloli S, Carpinelli A, Magni F, Russo F, Kienle MG, Fazio F (2002) [11C]RN5: a new agent for the in vivo imaging of myocardial alpha1-adrenoceptors. Eur J Pharmacol 453(2–3):231–238. https://doi.org/10.1016/S0014-2999(02)02454-8

    Article  CAS  PubMed  Google Scholar 

  22. Schou M, Halldin C, Sóvágó J, Pike VW, Gulyás B, Mozley PD, Johnson DP, Hall H, Innis RB, Farde L (2003) Specific in vivo binding to the norepinephrine transporter demonstrated with the PET radioligand, (S, S)-[11C]MeNER. Nucl Med Biol 30(7):707–714. https://doi.org/10.1016/S0969-8051(03)00079-9

    Article  CAS  PubMed  Google Scholar 

  23. Toyohara J, Sakata M, Fujinaga M, Yamasaki T, Oda K, Ishii K, Zhang MR, Jeckel CMM, Ishiwata K (2013) Preclinical and the first clinical studies on [11C]ITMM for mapping metabotropic glutamate receptor subtype 1 by positron emission tomography. Nucl Med Biol 40(2):214–220. https://doi.org/10.1016/j.nucmedbio.2012.11.008

    Article  CAS  PubMed  Google Scholar 

  24. Coliva A, Monterisi C, Apollaro A, Gatti D, Penso M, Gianolli L, Perani D, Gilardi MC, Carpinelli A (2015) Synthesis optimization of 2-(4-N-[11C] methylaminophenyl)-6-hydroxybenzothiazole ([11C]PIB), β-amyloid PET imaging tracer for Alzheimer’s disease diagnosis. Appl Radiat Isotopes 105:66–71. https://doi.org/10.1016/j.apradiso.2015.07.003

    Article  CAS  Google Scholar 

  25. Ono M, Wilson A, Nobrega J, Westaway D, Verhoeff P, Zhuang Z, Kung M, Kung HF (2003) 11C-labeled stilbene derivatives as Aβ-aggregate-specific PET imaging agents for Alzheimer’s disease. Nucl Med Biol 30(6):565–571. https://doi.org/10.1016/S0969-8051(03)00049-0

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Prof. Shende Jiang,s group for their synthesis support, and also thank Prof. Chuan Bai and Dr. Gaoqian Xiao for providing physical parameters. This work was supported by the National Natural Science Foundation ((Nos. 81371584, 81571704, 81671719), the Science and Technology Foundation of Guangdong Province (Nos. 2016B090920087, 2014A020210008, 2013B021800264), the Science and Technology Planning Project Foundation of Guangzhou (Nos. 201604020169, 201510010145), and the Natural Science Foundation of Guangdong Province (No. 2015A030313067).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganghua Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, F., Liu, S., Nie, D. et al. Synthesis and biodistribution of novel dansyl derivative 11C-DSB. J Radioanal Nucl Chem 318, 1271–1278 (2018). https://doi.org/10.1007/s10967-018-6184-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-6184-7

Keywords

Navigation