Skip to main content
Log in

99mTc-labeled glimepiride as a tracer for targeting pancreatic β-cells mass: preparation and preclinical evaluation

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Complexation of glimepiride with 99mTc, factors affecting yield and suitability of the 99mTc-glimepiride as a tracer for pancreatic β-cells mass were investigated. The radiocomplex showed maximum RCP of 98.2% and remained more than 90% stable up to 8 h in saline and serum. the complex structure and its binding to target sulphonyl urea receptor were assessed in silico. The 99mTc-glimepiride showed saturated in vitro binding with islet cells with a maximum uptake of 73%. Biodistribution and imaging studies suggested the feasibility of the tracer as a good candidate for specifically targeting β-cells mass in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. World Health Organization (2004) Global status report on noncommunicable diseases. ISBN: 978 92 4 156485 4

  2. Vetere A, Choudhary A, Burns S, Wagner B (2014) Targeting the pancreatic β-cell to treat diabetes. Nat Rev Drug Discov 13:278–289

    Article  CAS  Google Scholar 

  3. Waldron-Lynch F, Herold K (2011) Immunomodulatory therapy to preserve pancreatic β-cell function in type 1 diabetes. Nat Rev Drug Discov 10(6):439–452

    Article  CAS  Google Scholar 

  4. Gallwitz B, Kazda C, Kraus P, Nicolay C, Schernthaner G (2013) Contribution of insulin deficiency and insulin resistance to the development of type 2 diabetes: nature of early stage diabetes. Acta Diabetol 50(1):39–45

    Article  CAS  Google Scholar 

  5. Ritzel R (2009) Therapeutic approaches based on beta-cell mass preservation and/or regeneration. Front Biosci 14:1835–1850

    Article  CAS  Google Scholar 

  6. Borot S, Crowe L, Toso C, Vallee J, Berney T (2011) Noninvasive imaging techniques in islet transplantation. Curr Diab Rep 11(5):375–383

    Article  Google Scholar 

  7. Brom M, Weg W, Joosten L, Frielink C, Bouckenooghe T, Rijken P, Andralojc K, Göke B, Jong M, Eizirik D, Béhé M, Lahoutte T, Oyen W, Tack C, Janssen M, Boerman O, Gotthardt M (2014) Non-invasive quantification of the beta cell mass by SPECT with 111In-labelled exendin. Diabetologia 57(5):950–959

    Article  CAS  Google Scholar 

  8. Butler A, Janson J, Bonner-Weir S, Ritzel S, Rizza R, Butler P (2003) Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 52:102–110

    Article  CAS  Google Scholar 

  9. Kahn S, Carr D, Faulenbach M, Utzschneider K (2008) An examination of β-cell function measures and their potential use for estimating β-cell mass. Diabetes Obes Metab 10(4):63–76

    Article  Google Scholar 

  10. Laurent D, Vinet L, Lamprianou S, Daval M, Filhoulaud G, Ktorza A, Wang H, Sewing S, Juretschke H, Glombik H, Meda P, Boisgard R, Nguyen D, Stasiuk G, Long N, Montet X, Hecht P, Kramer W, Rutter G, Hecksher-Sørensen J (2016) Pancreatic β-cell imaging in humans: fiction or option? Diabetes Obes Metab 18(1):6–15

    Article  CAS  Google Scholar 

  11. Goland R, Freeby M, Parsey R, Saisho Y, Kumar D, Simpson N, Hirsch J, Prince M, Maffei A, Mann J, Butler P, Van Heertum R, Leibel R, Ichise M, Harris P (2009) 11C-Dihydrotetrabenazine PET of the pancreas in subjects with long-standing type 1 diabetes and in healthy controls. J Nucl Med 50(3):382–389

    Article  CAS  Google Scholar 

  12. Clark P, Gage H, Brown-Proctor C, Buchheimer N, Calles-Escandon J, Mach R, Morton K (2004) Neurofunctional imaging of the pancreas utilizing the cholinergic PET radioligand [18F]4-fluorobenzyltrozamicol. Eur J Nucl Med Mol Imag 31:258–260

    Article  CAS  Google Scholar 

  13. Otonkoski T, Nanto-Salonen K, Seppanen M, Veijola R, Huopio H, Hussain K, Tapanainen P, Eskola O, Parkkola R, Ekstrom K, Guiot Y, Rahier J, Laakso M, Rintala R, Nuutila P, Minn H (2006) Noninvasive diagnosis of focal hyperinsulinism of infancy with [18F]-DOPA positron emission tomography. Diabetes. 55:13–18

    Article  CAS  Google Scholar 

  14. Sweet I, Cook D, Lernmark A, Greenbaum C, Wallen A, Marcum E, Stekhova S, Krohn K (2004) Systematic screening of potential β-cells imaging agents. Biochem Biophys Res Commun 314:976–983

    Article  CAS  Google Scholar 

  15. Sweet I, Cook D, Lernmark A, Greenbaum C, Krohn K (2004) Non-invasive imaging of beta cell mass: a quantitative analysis. Diabetes Technol Ther 6:652–659

    Article  Google Scholar 

  16. Moore A, Bonner-Weir S, Weissleder R (2001) Noninvasive in vivo measurement of beta-cell mass in mouse model of diabetes. Diabetes 50(10):2231–2236

    Article  CAS  Google Scholar 

  17. Ueberberg S, Meier J, Waengler C, Schechinger W, Dietrich J, Tannapfel A, Schmitz I, Schirrmacher R, Koller M, Klein H, Schneider S (2009) Generation of novel single-chain antibodies by phage-display technology to direct imaging agents highly selective to pancreatic beta- or alpha-cells in vivo. Diabetes 58:2324–2334

    Article  CAS  Google Scholar 

  18. Connolly B, Vanko A, McQuade P, Guenther I, Meng X, Rubins D, Waterhouse R, Hargreaves R, Sur Hostetler C, Hostetler E (2012) Ex vivo imaging of pancreatic beta cells using a radiolabeled GLP-1 receptor agonist. Mol Imaging Biol 14(1):79–87

    Article  Google Scholar 

  19. Wang Y, Lim K, Normandin M, Zhao X, Cline G, Ding Y (2012) Synthesis and evaluation of [18F]Exendin (9-39) as a potential biomarker to measure pancreatic beta-cell mass. Nucl Med Biol 9(2):167–176

    Article  Google Scholar 

  20. Aguilar-Bryan L, Bryan J (1999) Molecular biology of adenosine triphosphate-sensitive potassium channels. Endocr Rev 20:101–135

    CAS  Google Scholar 

  21. Ashcroft F, Rorsman P (1989) Electrophysiology of the pancreatic beta-cell. Prog Biophys Mol Biol 54:87–144

    Article  CAS  Google Scholar 

  22. Uhde I, Toman A, Gross I, Schwanstecher C, Schwanstecher M (1999) Identification of the potassium channel opener site on sulfonylurea receptors. J Biol Chem 274:28079–28082

    Article  CAS  Google Scholar 

  23. Schneider S, Feilen P, Schreckenberger M, Schwanstecher M, Schwanstecher C, Buchholz H, Thews O, Oberholzer K, Korobeynikov A, Bauman A, Comagic S, Piel M, Schirrmacher E, Shiue C, Alavi A, Bartenstein P, Rösch F, Weber M, Klein H, Schirrmacher R (2005) In vitro and in vivo evaluation of novel glibenclamide derivatives as imaging agents for the non-invasive assessment of the pancreatic islet cell mass in animals and humans. Diabetes 113:388–395

    CAS  Google Scholar 

  24. Wangler B, Beck C, Shiue C, Schneider S, Schwanstecher C, Schwanstecher M, Feilen P, Alavi A, Rosch F, Schirrmachera R (2004) Synthesis and in vitro evaluation of (S)-2-([11C]methoxy)-4-[3-methyl-1-(2-piperidine-1-yl-phenyl)-butyl-carbamoyl]-benzoic acid ([11C]methoxy-repaglinide): a potential b-cell imaging agent. Bioorg Med Chem Lett 14:5205–5209

    Article  Google Scholar 

  25. Schirrmacher R, Weber M, Schmitz A, Shiue S, Alavi A, Feilen P, Schneider S, Kann P, Rösch F (2002) Radiosyntheses of 1-(4-(2-[18F]fluoroethoxy)benzenesulfonyl)-3-butyl urea: a potential β-cell imaging agent. J Label Compd Radiopharm 45:763–774

    Article  CAS  Google Scholar 

  26. Schneider S, Ueberberg S, Korobeynikov A, Schechinger W, Schwanstecher C, Schwanstecher M, Klein H, Schirrmacher E (2002) Synthesis and evaluation of a glibenclamide glucose-conjugate: a potential new lead compound for substituted glibenclamide derivatives as islet imaging agents. Regul Pept 139:122–127

    Article  Google Scholar 

  27. Kimura H, Matsuda H, Fujimoto H, Arimitsu K, Toyoda K, Mukai E, Nakamura H, Ogawa Y, Takagi M, Ono M, Inagaki N, Saji H (2014) Synthesis and evaluation of 18F-labeled mitiglinide derivatives as positron emission tomography tracers for β-cell imaging. Bioorg Med Chem 22:3270–3278

    Article  CAS  Google Scholar 

  28. Jodal A, Schibli R, Mauthor Béhé (2017) Targets and probes for non-invasive imaging of β-cells. Eur J Nucl Med Mol Imaging 44(4):712–727

    Article  Google Scholar 

  29. El-Kawy O, Farah K (2015) Radiocomplexation and biological evaluation of nemonoxacin in mice infected with multiresistant Staphylococcus aureus and penicillin-resistant Streptococci. J Radioanal Nucl Chem 306:123–130

    Article  CAS  Google Scholar 

  30. El-Kawy O, Garcia-Horsman A (2017) 99mTc-roxifiban: a potential molecular imaging agentfor the detection and localization of acute venous thrombosis. J Radioanal Nucl Chem 311:1719–1728

    Article  CAS  Google Scholar 

  31. El-Kawy O, Ibrahim I, Farah K (2015) Technetium-99m labeling and evaluation of olsalazine: a novel agent for ulcerative colitis imaging. J Label Compd Radiopharm 58:336–341

    Article  CAS  Google Scholar 

  32. El-Kawy O, Talaat H (2016) Preparation, characterization and evaluation of 186Re-idarubicin: a novel agent for diagnosis and treatment of hepatocellular carcinoma. J Label Compd Radiopharm 59:72–77

    Article  CAS  Google Scholar 

  33. Zhao Y, Zheng X, Zhang H, Zhai J, Zhang L, Li C, Zeng K, Chen Y, Li Q, Hu X (2015) In vitro inhibition of AKR1Cs by sulphonylureas and the structural basis. Chem Biol Interact 240:310–315

    Article  CAS  Google Scholar 

  34. Basit A, Riaz M, Fawwad A (2012) Glimepiride: evidence-based facts, trends, and observations. Vasc Health Risk Manag 8:463–472

    Article  CAS  Google Scholar 

  35. Niemi M, Backman J, Neuvonen M, Laitila J, Neuvonen P, Kivistö K (2001) Effects of fluconazole and fluvoxamine on the pharmacokinetics and pharmacodynamics of glimepiride. Clin Pharmacol Ther 69(4):194–200

    Article  CAS  Google Scholar 

  36. Shah S, Khan M (2011) Synthesis of techentium-99m labeled clinafloxacin (99mTc–CNN) complex and biological evaluation as a potential Staphylococcus aureus infection imaging agent. J Radioanal Nucl Chem 288:423–428

    Article  CAS  Google Scholar 

  37. Steigman J, Eckelman W (1992) The chemistry of various reducing agents used with pertechnetate in: the chemistry of technetium in medicine. National Academies, Washington, Dc, pp 15– 19

  38. Shargel L, Susanna W, Yu A (2012) physiological drug distribution and protein binding in: applied biopharmaceutics & pharmacokinetics, 6th edn.. McGraw-Hill Medical, New York, pp 211–223

  39. Szkudelski T (2001) The mechanism of alloxan and streptozotocin action in β cells of the rat pancreas. Physiol Res 50:536–546

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. El-Kawy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Kawy, O.A., García-Horsman, J.A. 99mTc-labeled glimepiride as a tracer for targeting pancreatic β-cells mass: preparation and preclinical evaluation. J Radioanal Nucl Chem 314, 2539–2550 (2017). https://doi.org/10.1007/s10967-017-5615-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-017-5615-1

Keywords

Navigation