Skip to main content
Log in

Introduction of multiple γ-ray detection to charged particle activation analysis

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Charged particle activation analysis (CPAA) is a rapid method with high accuracy which can analyze multi-elements simultaneously. Since multiple γ-ray detection method is expected to improve the detection efficiency and the signal-to-noise ratio, we study what design of the γ-ray detector array is the most suitable for CPAA. We take up four design candidates and investigated the responses by the radiation simulation code Geant 4. From the results, we have deduced the best design with 5 germanium detectors in close geometry. By inspecting the sensitivity in CPAA, the method is proved to be useful and applicable to 116 nuclides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ricci E, Hahn RL (1965) Theory and experiment in rapid, sensitive 3He activation analysis. Anal Chem 37:742–748

    Article  CAS  Google Scholar 

  2. Sanni AO, Roche NG, Dowell HJ, Schweikert EA, Ramsey TH (1984) On the determination of carbon and oxygen impurities in silicon by 3He activation analysis. J Radioanal Nucl Chem 81:125–129

    Article  CAS  Google Scholar 

  3. Valladon M, Debrun JL (1977) Determination of oxygen in metals and semiconductors by means of the 16O(T, n) 18F reaction. J Radioanal Nucl Chem 39:385–395

    Article  CAS  Google Scholar 

  4. Debefve P, Do HP, Friedli C, Lerch P (1981) Trace determination of oxygen in gold copper alloys and in high purity gold using 3He and 4He activation analysis. J Radioanal Nucl Chem 64:213–223

    Article  Google Scholar 

  5. Bottger ML, Birnstein D, Helbig W, Niese S (1980) Removal of disturbances in carbon determination by activation analysis for lowering the detection limit. J Radioanal Nucl Chem 58:173–181

    Article  Google Scholar 

  6. Yagi M, Masumoto K (1985) Simultaneous determination of Ti, Cr, Fe, Cu, Ga and Zr in aluminium alloys by charged-particle activation analysis using the internal standard method. J Radioanal Nucl Chem 91:379–387

    Article  CAS  Google Scholar 

  7. Masumoto K, Yagi M (1985) Determination of strontium in biological materials by charged-particle activation analysis using the stable isotope dilution method. J Radioanal Nucl Chem 91:369–378

    Article  CAS  Google Scholar 

  8. Yagi M, Masumoto K, Muto M (1986) An automatic gamma-ray spectrometer equipped with a micro-robot for sample changing. J Radioanal Nucl Chem 98:31–38

    Article  CAS  Google Scholar 

  9. Yagi M, Masumoto K (1987) Instrumental charged-particle activation analysis of several selected elements in biological materials using the internal standard method. J Radioanal Nucl Chem 111:359–369

    Article  CAS  Google Scholar 

  10. Shikano K, Yonezawa H, Shigematsu T (1993) Charged particle activation analysis of light elements at sub-ppb level. J Radioanal Nucl Chem 167:81–88

    Article  Google Scholar 

  11. Chaturvedula CS, Banerjee A, Sauvage T, Courtois B, Duval F (2016) Application of 12 MeV proton activation to the analysis of archaeological specimens. J Radioanal Nucl Chem 308:241–249

    Article  Google Scholar 

  12. Datta J, Dasgupta S, Guin R, Venkatesh M, Suvarna S, Chowdhury DP (2016) Determination of total arsenic and speciation of As(III) and As(V) in ground water by charged particle activation analysis. J Radioanal Nucl Chem 308:927–933

    Article  CAS  Google Scholar 

  13. Oshima M, Yamaguchi Y, Muramatsu W, Amano H, Bi C, Seto H, Bamba S, Morimoto T (2016) Study of charged particle activation analysis (I): determination sensitivity for single element samples. J Radioanal Nucl Chem 308:711–719

    Article  CAS  Google Scholar 

  14. PET http://www.jcpet.jp/1-3-4-1/. Accessed 19 Jun 2017

  15. Lee IY (1990) The gammasphere. Nucl Phys A520:c641–c655

    Article  Google Scholar 

  16. Wangen LE, Gladney ES, Starner JW, Hensley WK (1980) Determination of selenium in environmental standard reference materials by a gamma–gamma coincidence method using lithium-drifted germanium detectors. Anal Chem 52:765–767

    Article  CAS  Google Scholar 

  17. Jakubek J, Nuiten P, Pluhar J, Pospisil S, Sinor M, Stekl I, Timoracky S, Vobecky M (1998) Coincidence gamma–gamma spectroscopy system for instrumental neutron activation analysis. Nucl Instr Method A414:261–264

    Article  Google Scholar 

  18. Oshima M (2000) Non destructive trace element analysis. Look Japan 46:30–31

    Google Scholar 

  19. Hatsukawa Y, Oshima M, Hayakawa T, Toh Y, Shinohara N (2001) Application of multidimensional spectrum analysis for neutron activation analysis. J Radioanal Nucl Chem 248:121–124

    Article  CAS  Google Scholar 

  20. Toh Y, Oshima M, Hatsukawa Y, Hayakawa T, Shinohara N (2001) Comparison method for neutron activation analysis with γ-γ matrix. J Radioanal Nucl Chem 250:373–376

    Article  CAS  Google Scholar 

  21. Oshima M, Toh Y, Hatsukawa Y, Hayakawa T, Shinohara N (2002) A high-sensitivity and non-destructive trace element analysis based on multiple gamma-ray detection. J Nucl Sci Technol 39:292–294

    Article  CAS  Google Scholar 

  22. Hatsukawa Y, Oshima M, Hayakawa T, Toh Y, Shinohara N (2002) Application of multiparameter coincidence spectrometry using a Ge detectors array to neutron activation analysis. Nucl Instrum Methods A 482:328–333

    Article  CAS  Google Scholar 

  23. Oshima M, Toh Y, Hayakawa T, Hatsukawa Y, Shinohara N (2002) Development of a new method of neutron activation analysis with multiple gamma-ray detection—a high-sensitivity and non-destructive trace element analysis. J Nucl Sci Tech Suppl 2:1369–1371

    Article  Google Scholar 

  24. Toh Y, Hatsukawa Y, Oshima M, Shinohara N, Hayakawa T, Kushita K, Ueno T (2002) Isotopic ratio of 129I/127I in seaweed measured by neutron activation analysis with γ–γ coincidence. Health Phys 83:110–113

    Article  CAS  Google Scholar 

  25. Hatsukawa Y, Toh Y, Oshima M, Hayakawa T, Shinohara N, Kushita K, Ueno T, Toyota K (2003) New technique for the determination of trace elements using multiparameter coincidence spectrometry. J Radioanal Nucl Chem 255:111–113

    Article  CAS  Google Scholar 

  26. Kimura A, Toh Y, Oshima M, Hatsukawa Y, Goto J (2007) Determination of As and Sb in iron and steel by neutron activation analysis with multiple gamma-ray detection. J Radioanal Nucl Chem 271:323–327

    Article  CAS  Google Scholar 

  27. Hatsukawa Y, Miyamoto Y, Toh Y, Oshima M, Gharaie MHM (2007) Determination of trace elements using multi-parameter coincidence spectrometry. J Radioanal Nucl Chem 271:43–45

    Article  CAS  Google Scholar 

  28. Kimura A, Toh Y, Oshima M, Hatsukawa Y (2008) Lower limit of determination values for trace elements in iron certified reference materials by neutron activation analysis with multiple gamma-ray detection. J Radioanal Nucl Chem 278:521–525

    Article  CAS  Google Scholar 

  29. Oshima M, Toh Y, Hatsukawa Y, Koizumi M, Kimura A, Haraga A, Ebihara M, Sushida K (2008) Multiple gamma-ray detection method and its application to nuclear chemistry. J Radioanal Nucl Chem 278:257–262

    Article  CAS  Google Scholar 

  30. Jorgensen UG, Appel PWU, Hatsukawa Y, Frei R, Oshima M, Toh Y, Kimura A (2009) The earth–moon system during the late heavy bombardment period—geochemical support for impacts dominated by comets. Icarus 204:368–380

    Article  Google Scholar 

  31. Oshima M, Toh Y, Kimura A, Ebihara M, Oura Y, Itoh Y, Sawahata H, Matsuo M (2007) Multiple prompt gamma-ray analysis and construction of its beam line. J Radioanal Nucl Chem 271:317–321

    Article  CAS  Google Scholar 

  32. Toh Y, Koizumi M, Oshima M, Kimura A, Hatsukawa Y, Osa A, Goto J (2007) Analysis of toxic elements by MPGA. J Radioanal and Nucl Chem 272:303–305

    Article  CAS  Google Scholar 

  33. Toh Y, Oshima M, Koizumi M, Kimura A, Hatsukawa Y (2008) Development of multiple prompt gamma-ray analysis. J Radioanal Nucl Chem 276:217–220

    Article  CAS  Google Scholar 

  34. Toh Y, Oshima M, Koizumi M, Osa A, Kimura A, Goto J, Hatsukawa Y (2006) Analysis of cadmium in food by multiple prompt γ-ray spectroscopy. Appl Radiat Isot 64:751–754

    Article  CAS  Google Scholar 

  35. Oura Y, Watanabe R, Ebihara M, Murakami Y, Toh Y, Kimura A, Koizumi M, Furutaka K, Oshima M, Hara K, Kin T, Nakamura S, Harada H (2012) Application of multiple prompt gamma-ray analysis (MPGA) to geochemical and cosmochemical samples. J Radioanal Nucl Chem 291:335–339

    Article  CAS  Google Scholar 

  36. Shozugawa K, Matsuo M, Sano Y, Toh Y, Murakami Y, Furutaka K, Koizumi M, Kimura A, Hara K, Kin T, Oshima M, Nakamura S, Harada H (2012) Chemical composition of sediments from marine shallow-water hydrothermal mounds in Wakamiko submarine crater revealed by multiple prompt gamma-ray analysis. J Radioanal Nucl Chem 291:341–346

    Article  CAS  Google Scholar 

  37. Furuno K, Oshima M, Komatsubara T, Furutaka K, Hayakawa T, Kidera M, Hatsukawa Y, Matsuda M, Mitarai S, Shizuma T, Saitoh T, Hashimoto N, Kusakari H, Sugawara M, Morikawa T (1999) A γ-ray detector array for joint spectroscopy experiments at JAERI tandem booster. Nucl Instr Method A421:211–226

    Article  Google Scholar 

  38. Geant 4. http://geant4.cern.ch/. Accessed 19 June 2017

  39. Agostinelli S et al (2003) Geant 4—a simulation toolkit. Nucl Instr Method A506:250–303

    Article  Google Scholar 

  40. Allison J et al (2006) Geant 4 developments and applications. IEEE Trans Nucl Sci 53:270–278

    Article  Google Scholar 

  41. Allison J et al (2016) Recent developments in Geant 4. Nucl Instr Method A835:186–225

    Article  Google Scholar 

  42. NuDat. http://www.nndc.bnl.gov/nudat2/. Accessed 19 Jun 2017

Download references

Acknowledgements

The authors appreciate the discussions by Drs. T. Hayakawa and Y. Hatsukawa of National Institutes for Quantum and Radiological Science and Technology. This work was supported in part by JSPS KAKENHI Grant Number 15K01357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Goto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goto, J., Oshima, M., Sugawara, M. et al. Introduction of multiple γ-ray detection to charged particle activation analysis. J Radioanal Nucl Chem 314, 1707–1714 (2017). https://doi.org/10.1007/s10967-017-5558-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-017-5558-6

Keywords

Navigation