Skip to main content
Log in

Study of exchange networks between two Amazon archaeological sites by INAA

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

This work comprises the utilization of instrumental neutron activation analysis to determine the concentration of 24 chemical elements in pottery shards from two large archaeological sites in central Amazon, Lago Grande and Osvaldo. The multidimensional data set was analyzed by cluster and principal component analysis for defining chemical groups of pottery. The results were correlated to potential exchange networks driven by three mechanisms: trade, exogamic marriage and territorial integration in the region. All of them have important consequences for archaeological research regarding the Amazonian pre-colonial occupation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pollard M, Heron C (1996) Archaeological chemistry. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  2. Velde B, Druc IC (1999) Archaeological ceramic materials: origin and utilization. Springer, Berlin

    Book  Google Scholar 

  3. Glascock MD, Neff H (2003) Neutron activation analysis and provenance research in archaeology. Meas Sci Technol 14:1516–1526

    Article  CAS  Google Scholar 

  4. Glascock MD, Neff H, Vaugh KJ (2004) Instrumental neutron activation analysis and multivariate statistics for pottery provenance. Hyper Interact 154:95–105

    Article  CAS  Google Scholar 

  5. Munita CS (2005) Contribuição da análise por ativação com nêutrons a estudos arqueométricos: estudo de caso. Canindé 6:159–181

    Google Scholar 

  6. Weigand PC, Harbottle G, Sayre EV (1977) Turquoise sources and source analysis: Mesoamerica and the Southwestern U.S.A. In: Early TK, Ericson JE (eds) Exchange systems in prehistory. Academic Press Inc., New York, pp 15–34

    Google Scholar 

  7. Dias MI, Prudêncio MI (2007) Neutron activation analysis of archaeological materials: an overview of ITN NAA laboratory. Port Archaeom 49(2):383–393

    Article  CAS  Google Scholar 

  8. Tite MS (2008) Ceramic production, provenance and use—a review. Archaeometry 50(2):216–231

    Article  CAS  Google Scholar 

  9. Neves EG (2008) Ecology, ceramic chronology and distribution, long-term history, and political change in the Amazonian floodplain. In: Silverman H, Isbell WH (eds) Handbook of South American archaeology. Springer, New York, pp 359–379

    Chapter  Google Scholar 

  10. Meggers BJ (1996) Amazonia: man and culture in a Counterfeit Paradise. Smithsonian Institution Press, Washington, DC

    Google Scholar 

  11. Machado JS (2006) Dos artefatos às aldeias: os vestígios arqueológicos no entendimento das formas de organização social da Amazônia. Rev Antropol 49(2):755p

    Article  Google Scholar 

  12. Heckenberger MJ, Neves EG (2009) Amazonian archaeology. Ann Rev Anthropol 38:251–266

    Article  Google Scholar 

  13. Lima H (2008) História das Caretas: A Tradição Borda Incisa na Amazônia Central. PhD Thesis, Universidade de São Paulo, Brazil

  14. Portocarrero RC (2006) A variabilidade espacial no sítio Osvaldo. Estudo de um assentamento da tradição barrancóide na Amazônia central. PhD dissertation, Universidade de São Paulo, Brazil

  15. Donatti PB (2003) A ocupação pré-colonial da área do Lago Grande, Iranduba, AM. PhD dissertation, Universidade de São Paulo, Brazil

  16. Mongeló GZ (2011) Processos de interação entre os sítios Lago Grande e Oswaldo (AM) baseados no material cerâmico. Rev Museu de Arqueol e Etnol 11:109–114

    Google Scholar 

  17. Neves EG, Petersen J (2006) Political economy and pre-columbian landscape transformations in central Amazonia. Time Complex Hist Ecol, 279–310

  18. Silva FA (2009) A etnoarqueologia na Amazônia: contribuições e perspectivas. Bol Mus Para Emílio Goeldi Ciênc hum 4(1):27–37

    Google Scholar 

  19. Bishop RL, Canouts V, De Atley SP, Qöyawayma A, Aikins CW (1988) The formation of ceramic analytical groups: hopi pottery production and exchange, A.C. 1300-1600. J Field Archaeol 15(3):317–337

    Google Scholar 

  20. Munita CS, Paiva RP, Alves MA, Oliveira PMS, Momose EF (2003) Provenance study of archaeological ceramics. J Trace Microprobe Tech 21:697–706

    Article  CAS  Google Scholar 

  21. Blackman MJ, Bishop RL (2007) The Smithsonian-NIST partnership: the application of instrumental neutron activation analysis to archaeology. Archaeometry 49(2):321–341

    Article  CAS  Google Scholar 

  22. Harbottle G (1982) Chemical characterization in Archaeology. In: Ericson JE, Earle TK (eds) Contexts for pre-historic exchange. Academic Press, New York, pp 13–51

    Google Scholar 

  23. Glascock MD (1992) Characterization of archaeological ceramics at MURR by neutron activation analysis and multivariate statistics. In: Neff H (ed) Chemical characterization of ceramic pastes in archaeology. Pre-History Press, Madison, pp 11–26

    Google Scholar 

  24. Beier T, Mommsen H (1994) Modified Mahalanobis filters for grouping pottery by chemical composition. Archaeometry 36(2):287–306

    Article  CAS  Google Scholar 

  25. Koch GS, Link RF (2002) Statistical analysis of geological data. Courier Dove Publications, New York

    Google Scholar 

  26. Oliveira PMS, Munita CS (2003) Influência do valor crítico na detecção de valores discrepantes em arqueometria. Anais do 10º SEAGRO, Lavras, 7–11 julho

  27. Baxter MJ (1994) Exploratory multivariate analysis in archaeology. Edinburgh Univesity Press, Edinburgh

    Google Scholar 

  28. Hazenfratz-Marks R. (2014) Nêutrons, radiação e arqueologia: estudo de caso multianalítico de cerâmicas da tradição borda incisa na Amazônia Central. PhD Thesis, University of São Paulo, Brazil

  29. Attas M, Fossey JM, Yaffe L (1984) Corrections for drill-bit contamination in sampling ancient pottery for neutron activation analysis. Archaeometry 26(1):104–107

    Article  CAS  Google Scholar 

  30. Keding R, Jensen M, Yue Y (2010) Characterization of the mesoporous amorphous silica in the fresh water sponge Cauxi. In: Munir ZA, Ohji T and Hotta Y (eds) Innovative processing and manufacturing of advanced ceramics and composites, pp 115–129

  31. Demaster DJ (2005) The diagenesis of biogenic silica: chemical transformations occurring in the water column, seabed, and crust. In: Mackenzie FT (ed) Treatise of geochemistry, vol 7. Elsevier, Amsterdam, pp 87–98

    Google Scholar 

  32. Bishop RL (2003) Instrumental neutron activation analysis of archaeological ceramics: progress and challenges. In: IAEA-TRS416—nuclear analytical techniques in archaeological investigations, Vienna, chap. 2, pp 35–44

  33. Schwedt A, Mommsen H, Zacharias N (2004) Post-depositional elemental alterations in pottery: neutron activation analysis of surface and core samples. Archaeometry 46(1):85–101

    Article  CAS  Google Scholar 

  34. Buxeda I, Garrigós J, Mommsen H, Tsolakidou A (2002) Alterations of Na-, K-, and Rb- concentrations in Mycenaean pottery and a proposed explanation using X-ray diffraction. Archaeometry 44(2):187–198

    Article  Google Scholar 

  35. Martinelli LA, Victoria RL, Dematte JLI, Richey JE, Devol AH (1993) Chemical and mineralogical composition of Amazon River floodplain sediments, Brazil. Appl Geochem 8:391–402

    Article  CAS  Google Scholar 

  36. Vital H, Stattegger K (2000) Major and trace elements of stream sediments from the lowermost Amazon River. Chem Geol 168:151–168

    Article  CAS  Google Scholar 

  37. Gaillardet J, Dupré B, Allègre CJ, Négrel P (1997) Chemical and physical denudation in the Amazon River Basin. Chem Geol 142:141–173

    Article  CAS  Google Scholar 

  38. Gaudette HE, Grim RE, Metzger CF (1996) Illite: a model based on the sorption behavior of Cesium. Am Mineral 51(11):1649–1656

    Google Scholar 

  39. Schwedt A, Mommsen H (2007) On the influence of drying and firing of clay on the formation of trace element concentration profiles within pottery. Archaeometry 49(3):495–509

    Article  CAS  Google Scholar 

  40. Harbottle G (1982) Provenance studies using neutron activation analysis: the role of standardization. In: Olin JS, Franklin AD (eds) Archaeological ceramics. Smithsonian Institution Press, Washington, DC, pp 67–77

    Google Scholar 

  41. Moraes CP (2006) Arqueologia na Amazônia central vista de uma perspectiva da região do Lago do Limão. PhD dissertation, Universidade de São Paulo, Brazil

Download references

Acknowledgments

This work was realized with the support from São Paulo Research Foundation—FAPESP—Brazil (Process Number: 2010/07659-0), and partially with the support of Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq—Brazil (Process Number: 134116/2009-7). The MURRAP freeware software was made available by the Archaeometry Laboratory at the University of Missouri Research Reactor, managed by Dr. Michael Glascock.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Hazenfratz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hazenfratz, R., Munita, C.S., Glascock, M.D. et al. Study of exchange networks between two Amazon archaeological sites by INAA. J Radioanal Nucl Chem 309, 195–205 (2016). https://doi.org/10.1007/s10967-016-4758-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-016-4758-9

Keywords

Navigation